CHEMSTRY
 A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2011

Molecular Editing and Assessment of the Cytotoxic Properties of Iejimalide and Progeny

Julien Gagnepain, ${ }^{[a]}$ Emilie Moulin, ${ }^{[a]}$ Cristina Nevado, ${ }^{[a]}$ Mario Waser, ${ }^{[a]}$ Armin Maier, ${ }^{[b]}$ Gerhard Kelter, ${ }^{[b]}$ Heinz-Herbert Fiebig, ${ }^{[b]}$ and Alois Fürstner* ${ }^{* a]}$
chem_201100180_sm_miscellaneous_information.pdf

Evaluation of the Anti-Tumor Activity.

Monolayer proliferation assay: A modified propidium iodide assay was used to determine the cytotoxic activity of the compounds against human tumor cell lines. The test procedure has been described elsewhere. ${ }^{1}$ The cell lines were established from patient-derived tumor xenografts passaged subcutaneously in nude mice, or were obtained from American Type Culture Collection, Rockville, MD, USA (PRXF 22RV1), or the National Cancer Institute, Bethesda, MD, USA (CXF HT29). Authenticity of all cell lines was proven by STR (short tandem repeat) analysis. All cells were grown at $37^{\circ} \mathrm{C}$ in a humidified atmosphere (95% air, $5 \% \mathrm{CO}_{2}$) in RPMI 1640 medium (PAA, Cölbe, Germany) supplemented with 10% fetal calf serum (PAA) and $0.1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ gentamicin (PAA). Cell lines were incubated in 96 multi-well plates. Test compounds were added to the plates after one day at five concentrations in triplicate, and left for further four days. Inhibition of proliferation was determined by measuring the DNA content using an aqueous propidium iodide solution ($7 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}$). Fluorescence was measured using the Cytofluor 4000.

Colony formation assay: Effects of the test compounds on clonogenicity of tumor cells were investigated in a colony formation assay. Tumor xenografts were derived from patient tumors engrafted as a subcutaneously growing tumor in NMRI nu/nu mice obtained from Oncotest's breeding facility. Details of the test procedure have been described earlier. ${ }^{1}$ Briefly, solid human tumor xenografts were removed from mice under sterile conditions, mechanically disaggregated and subsequently incubated with an enzyme cocktail consisting of collagenase type IV (41 U/mL), DNase I ($125 \mathrm{U} / \mathrm{mL}$), hyaluronidase type III ($100 \mathrm{U} / \mathrm{mL}$) and dispase II (1.0 U/mL) in RPMI 1640-Medium at $37^{\circ} \mathrm{C}$ for 45 minutes. Cells were passed through sieves of $200 \mu \mathrm{~m}$ and $50 \mu \mathrm{~m}$ mesh size and washed twice with sterile PBS-buffer. The percentage of viable cells was determined in a Neubauerhemocytometer using trypan blue exclusion. The bottom layer consisted of $0.2 \mathrm{~mL} /$ well Iscove's Modified Dulbecco's Medium (IMDM, Invitrogen), supplemented with 20% (v / v) fetal calf serum (Sigma), $0.01 \%(w / v)$ gentamicin (Invitrogen) and $0.75 \%(w / v)$ agar (BD Biosciences). 1.5×10^{4} to 4×10^{4} cells were added to 0.2 mL of the same culture medium supplemented with $0.4 \%(\mathrm{w} / \mathrm{v})$ agar and plated in 24-multiwell dishes onto the bottom layer. The test compounds were applied by continuous exposure (drug overlay) in 0.2 mL of culture medium. Every dish included six untreated control wells and drug-treated groups in triplicate at 6 concentrations. Cultures were incubated at $37^{\circ} \mathrm{C}$ and 7.5% CO_{2} in a humidified atmosphere for 7-20 days and monitored closely for colony growth using an inverted microscope. Within this period, in vitro tumor growth led to the formation of colonies with a diameter of $>50 \mu \mathrm{~m}$. Colony counts were performed with an automatic image analysis system (OMNICON 3600, Biosys GmbH). 24 h prior to evaluation, vital colonies were stained with a sterile

[^0]aqueous solution of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride ($1 \mathrm{mg} / \mathrm{mL}, 100$ $\mu \mathrm{L} /$ well).
In vivo evaluation in nude mice carrying tumor xenografts: In vivo efficacy was determined in mice carrying human tumor xenografts. All experiments were conducted according to the guidelines of the German Animal Health and Welfare Act (Tierschutzgesetz). Animal health was examined at the day before tumor implantation and before randomization to ensure that only animals of good health were selected to enter testing procedures. The test procedure has been described elsewhere. ${ }^{1}$ Briefly, tumor fragments of human tumor xenografts were implanted into the flanks of immunedeficient mice of NMRI nu/nu genetic background (Charles River, Sulzfeld, Germany). The fragments were obtained from tumors in serial passage, established either from direct implantation of patient material, or from injection of tumor cell lines obtained from National Cancer Institute, Bethesda, MD, USA. Tumor growth was assessed by serial calliper measurements of two perpendicular tumor diameters. Treatment was started when tumors were palpable and reached a median volume of ${ }^{\sim} 100 \mathrm{~mm}^{3}$, depending on tumor type. Each treatment group consisted of 4 mice. Animals with appropriate tumor volumes were randomly distributed into treatment and control groups (day 0). Tumor diameters and body weights were recorded twice weekly. For the evaluation of treatment efficacy, tumor volumes were calculated for each time point according to the formula (length x width ${ }^{2} / / 2$, and the median relative tumor volume was plotted the against time. Relative tumor volumes were calculated for each single tumor by dividing the tumor volume on day X by the initial tumor volume on day 0 at the time of randomization. A median body weight loss of $>20 \%$ without recovery was considered not evaluable for anti-tumor efficacy. The U-Test by Mann-WhitneyWilcoxon was used for the statistical analysis of the data based on median relative tumor volume parameters.

General: All reactions were carried out in flame-dried glassware under Ar. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}, 1,4$-dioxane (Mg-anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right)$, MeCN, $\mathrm{Et}_{3} \mathrm{~N}$, pyridine, DMSO, EtOAc (CaH_{2}), $\mathrm{MeOH}(\mathrm{Mg}), \mathrm{DMF}$ (Desmodur®, dibutyltin dilaurate), hexane, toluene (Na / K). Flash chromatography: Merck silica gel 60 (230-400 mesh) or CombiFlash (Teledyne Isco). NMR: Spectra were recorded on a Bruker DPX 300, AV 400, or DMX 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale ($\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.0 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} \equiv 7.24$ ppm; $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{C}} \equiv 53.8 \mathrm{ppm}$; residual $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{\mathrm{H}} \equiv 5.32 \mathrm{ppm}$). IR: Magna IR750 (Nicolet) or spectrum One (Perkin Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. Unless stated otherwise, commercially available compounds (Fluka, Lancaster, Aldrich) were used as received. The data of compound 8 and its precursors are contained in ref. 2.

[^1]
Building Blocks for the Phthalimide Route and the Biotinylated Analogue 24 (Scheme 3)

Alcohol S-1: A solution of LiBHEt_{3} (1 M in THF, $55.2 \mathrm{~mL}, 55.2 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ to a
 solution of ester 11 ($5 \mathrm{~g}, 16.7 \mathrm{mmol})^{3}$ in THF (167 mL). The cooling bath was removed and the mixture was slowly warmed to room temperature. The reaction was then cooled at $0^{\circ} \mathrm{C}$ and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(50$ $\mathrm{mL})$, the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, filtered and evaporated to give a crude colorless oil. Purification by flash chromatography, eluting with hexanes/EtOAc (1:1 $\rightarrow 0: 1$), afforded alcohol $\mathbf{~ S - 1 ~ a s ~ a ~ w h i t e ~ s o l i d ~ (~} 4.5 \mathrm{~g}$, quant.). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.74(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}), 5.71$ $(\mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 75.5 MHz): $\delta=170.2,147.0,139.7,134.5,134.2,133.4,131.6,125.5,125.1,124.8,121.7,83.0,69.4$, 48.5, 15.8, 15.0; IR (film): $\tilde{v}=3327,2911,2855,1675,1469,1434,1346,1288,1205,1127,1058$, 1002, 919, 790, 746, $705 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 273 (1, M^{+}), 255 (23), 222 (2), 196 (2), 182 (1), 163 (6), 150 (18), 133 (100), 106 (78), 91 (21), 77 (22); HRMS (ESI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}\left[M^{+}+\mathrm{Na}\right]$: 296.12576, found: 296.12571.

Aldehyde 12: $\mathrm{MnO}_{2}(70 \mathrm{~g}, 824 \mathrm{mmol})$ was added to a solution of alcohol $\mathrm{S}-1(4.5 \mathrm{~g}, 16.48 \mathrm{mmol})$ in
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and the resulting suspension stirred for 18 h before it was filtered through a pad of Celite, which was carefully rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the combined filtrates followed by purification of the residue by flash chromatography (hexanes/EtOAc, 6:1 $\rightarrow 4: 1$) gave aldehyde 12 as a white solid (3.4 g, 75%). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes at $0^{\circ} \mathrm{C}$ afforded colorless needles. M.p. $=150-152^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=9.40(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.01(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta=194.9,167.9,143.1,142.5,137.9,134.2,131.7,123.4,122.1,45.0,15.7,9.4 ; \mathrm{IR}$ (film): $\tilde{v}=1771,1708,1674,1633,1467,1420,1385,1332,1228,1177,1088,1009,938,911,841$, 793, 723, $711 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 269 (1, M^{+}), 251 (3), 236 (2), 160 (9), 148 (3), 130 (7), 122 (19), 109 (100), 93 (5), 77 (14); HRMS (ESI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}\left[M^{+}+\mathrm{Na}\right]$: 292.09448, found: 292.09441.

Compound 14: $\mathrm{Pd}(\mathrm{OAc})_{2}(95.6 \mathrm{mg}, 0.427 \mathrm{mmol})$ was dissolved in THF $(70 \mathrm{~mL})$ and the homogeneous
 brown solution was cooled to $-78^{\circ} \mathrm{C} . \mathrm{PPh}_{3}(112 \mathrm{mg}, 0.427 \mathrm{mmol})$ was added, followed by mesylate $13(3.15 \mathrm{~g}, 10.26 \mathrm{mmol})$ and a solution of aldehyde 12 ($2.3 \mathrm{~g}, 8.55 \mathrm{mmol}$) in THF (15 mL). A solution of ZnEt_{2} (1.0 M in hexane, $25.7 \mathrm{~mL}, 25.7 \mathrm{mmol}$) was then slowly introduced. The resulting mixture was warmed to $-20^{\circ} \mathrm{C}$ over a period of 1 h and stirring continued for 4 h at that temperature. The reaction was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined organic layers were washed with

[^2]brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 20:1 \rightarrow 10:1) to give alcohol 14 as a colorless oil ($3.04 \mathrm{~g}, 74 \%$). $[\alpha]_{D}^{20}=+40.6\left(c=2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H})$, $6.24(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=6.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-1.08(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=168.5$, $137.8,134.3,132.9,132.5,123.5,122.9,122.8,110.2,83.6,80.8,45.6,33.2,18.7,18.2,15.2,12.3$, 11.6; IR (film): $\tilde{v}=3542,2941,2864,2161,1771,1711,1465,1425,1386,1329,1006,939,882,724$ cm^{-1}; MS (EI): m/z (\%): 479 (0.3, M^{+}), 436 (1), 270 (100), 252 (10), 228 (1), 167 (12), 160 (35), 123 (38), 105 (13); HRMS (ESI) m / z : calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 502.27493, found: 502. 27479.

Compound 15: A solution of TBAF (1 M in THF, 6.74 mL) was added to a solution of alcohol 14 (2.94 g ,
 6.13 mmol) in THF (30 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 2 h before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(30$ mL) and EtOAc (5 mL). The aqueous phase was extracted with EtOAc ($2 \times$ 5 mL), the combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1 $\rightarrow 4: 1$) to give alcohol 15 as a colorless oil ($1.52 \mathrm{~g}, 77 \%$). $[\alpha]_{D}^{20}=+42.1\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300\right.$ MHz): $\delta=7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{bs}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=168.5,137.7,134.3,133.2,132.4,123.5,123.0,122.6,86.2$, 80.9, 70.8, 45.5, 31.6, 17.8, 15.2, 12.1; IR (film): $\tilde{v}=3466,3286,2934,1770,1705,1387,1329,1006$, 939, $911 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 323 (0.4, M^{+}), 270 (78), 252 (11), 160 (100), 148 (12), 130 (21), 123 (69); HRMS (ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}\left[M^{+}+\mathrm{Na}\right.$]: 346.14139, found: 346. 14136.

Compound 16: nBuLi (1.6 M in hexane, $5.2 \mathrm{~mL}, 8.37 \mathrm{mmol}$) was added to a solution of $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}(4.85$
 $\mathrm{g}, 8.37 \mathrm{mmol})$ in THF (8 mL) at $-78^{\circ} \mathrm{C}$; once the addition was complete, the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 min . The resulting bright yellow solution was cooled to $-78^{\circ} \mathrm{C}$ before CuCN ($725.6 \mathrm{mg}, 8.16 \mathrm{mmol}$) was introduced. The cooling bath was removed and stirring continued until all solid material had dissolved, affording a bright yellow homogeneous solution. After stirring for 1 h at room temperature, a solution of alkyne 15 ($660 \mathrm{mg}, 2.04 \mathrm{mmol}$) in THF (2 mL) was introduced and stirring continued for 10 min . The reaction was then quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$ and diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. Once all copper precipitates had dissolved, the blue aqueous phase was extracted with tert-butyl methyl ether $(3 \times 2 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1:0 \rightarrow 6:1, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give stannane 16 as a colorless oil ($0.9 \mathrm{~g}, 72 \%, E / Z$ $\geq 16: 1) .[\alpha]_{D}^{20}=+25.2\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=7.83-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}$, $2 \mathrm{H}), 6.23(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=19.0,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{bs}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.55-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.95-0.70(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right): \delta=168.0 \text {, }, ~, ~}$ $151.0,138.0,133.8,131.9,131.5,130.8,123.2,123.1,122.8,80.7,46.2,45.2,28.9,27.1,16.6,15.0$,
13.6, 11.8, 9.3; IR (film): $\tilde{v}=3544,2956,2925,2871,1771,1712,1425,1388,1330,1002,940,724$ cm^{-1}; HRMS (ESI) m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{3} \mathrm{Sn}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 638.26326, found: 638.26266.

Compound 17: A solution of $\mathrm{I}_{2}(362 \mathrm{mg}, 1.42 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ was added to a solution of
 stannane $16(860 \mathrm{mg}, 1.36 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting brown mixture was stirred at room temperature for 30 min before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 4 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4}, filtered and evaporated, and the crude material purified by flash chromatography (hexanes/EtOAc, $10: 1 \rightarrow 5: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give iodide 17 as a white solid ($551 \mathrm{mg}, 90 \%$). $[\alpha]_{D}^{20}=+25.6\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.66(\mathrm{~m}, 2 \mathrm{H})$, 6.48 (dd, $J=14.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=11.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{dd}, J=$ $14.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{bs}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$,
 131.9, 123.3, 123.0, 122.8, 81.0, 75.9, 45.3, 44.4, 16.2, 15.1, 11.9; IR (film): $\widetilde{v}=3465,2956,2925$, 1770, 1709, 1389, 1331, 1007, 941, $726 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 270 (100), 252 (17), 181 (2), 160 (79), 123 (69), 105 (23); HRMS (ESI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3}$ [$\left.M^{+}+\mathrm{Na}\right]$: 474.05337, found: 474.05366.

Compound 24: A solution of MeNH_{2} in $\mathrm{EtOH}(33 \% w / w, 2 \mathrm{~mL})$ was added to phthalimide $\mathbf{2 3}$ (12.6 mg ,
 0.0178 mmol) and the resulting mixture was heated in a microwave reactor at $60^{\circ} \mathrm{C}$ for 30 min . For work up, all volatile materials were evaporated under high vacuum and the residue taken up in aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ and EtOAc (3 mL). The aqueous layer was extracted with EtOAc $(3 \times 1 \mathrm{~mL})$, the combined organic phases were washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give the corresponding free amine 7 as a pale yellow oil. This material was immediately dissolved in DMF (0.5 mL) and treated with compound $25(6.36 \mathrm{mg}, 0.0178 \mathrm{mmol})$, HOBt $(2.64 \mathrm{mg}, 0.019 \mathrm{mmol})$ and EDC. $\mathrm{HCl}(5.1 \mathrm{mg}, 0.0267 \mathrm{mmol})$. The resulting white suspension was stirred for 16 h to give a homogeneous bright yellow solution. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$, the aqueous layer was extracted with EtOAc ($3 \times 1 \mathrm{~mL}$), the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$ and brine $(3 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \rightarrow 15: 1\right)$ to give product 24 as a white solid ($11 \mathrm{mg}, 70 \%$). $[\alpha]_{D}^{20}=+12.5$ ($c=0.45, \mathrm{MeOH}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=6.65$ (dd, $J=10.4$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=11.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}$, $J=14.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{td}, J=15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J=15.4,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}$, $J=7.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=7.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{dt}, J=10.0,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{bs}, 2 \mathrm{H})$, $3.32-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=12.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$,
$1.82(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=176.6,176.5,169.6,166.6,147.6,139.0,137.8,137.7,135.1$ 134.9, 134.5, 134.3, 134.3, 133.5, 133.4, 132.7, 131.1, 129.7, 127.2, 127.2, 126.6, 121.9, 85.2, 81.7, $78.6,72.2,63.9,62.1,57.6,57.5,56.6,48.1,42.4,41.6,40.6,39.7,37.5,37.3,30.6,30.3,30.0,28.1$, 27.4, 27.3, 22.3, 21.4, 17.5, 15.6, 13.8, 12.7, 12.7; IR (film): $\tilde{v}=2925,2860,1702,1643,1539,1450$, 1260, 1216, 1105, 988, $963 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{53} \mathrm{H}_{80} \mathrm{O}_{7} \mathrm{~N}_{4}\left[M^{+}+\mathrm{Na}\right.$]: 939.56399, found: 939.56315.

Building Blocks for the Preparation of Analogues Differing in the Amino Acid Terminus (Scheme 4)

Compound 27b: A Schlenk tube was charged under Ar with anhydrous $\mathrm{Et}_{4} \mathrm{NF}(1.54 \mathrm{~g}, 10.3 \mathrm{mmol})$ and a solution of compound $26(800 \mathrm{mg}, 1.72 \mathrm{mmol})^{3}$ in $\mathrm{MeCN}(17 \mathrm{~mL})$.
 The reaction mixture for stirred for 16 h at $40^{\circ} \mathrm{C}$ before the solvent was evaporated. The residue was diluted with EtOAc (5 mL), the organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$, the aqueous phase was re-extracted with EtOAc ($6 \times 2 \mathrm{~mL}$), the combined organic phases were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated to give the crude amine as a colorless oil (519 mg).
N-Formyl-L-alanine ($112.4 \mathrm{mg}, 0.96 \mathrm{mmol}$), HOBt ($127 \mathrm{mg}, 0.96 \mathrm{mmol}$), and N -methylmorpholine $(176 \mu \mathrm{~L}, 1.6 \mathrm{mmol})$ were added to a solution of this amine ($259 \mathrm{mg}, 0.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ before EDC $\cdot \mathrm{HCl}(230 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added and stirring continued at room temperature for 16 h . The reaction was quenched with $\mathrm{HCl}(0.1 \mathrm{M}, 8 \mathrm{~mL})$, the aqueous phase was extracted with EtOAc ($3 \times 2 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4} and evaporated. Purification of the residue by flash chromatography (EtOAc/MeOH, 1:0 \rightarrow 50:1) gave compound $\mathbf{2 7 b}$ as a colorless oil ($323 \mathrm{mg}, 96 \%$). $[\alpha]_{D}^{20}=+7.2\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.12(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{brs}, 1 \mathrm{H}), 6.21-6.09(\mathrm{~m}, 4 \mathrm{H})$, $4.53-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{brs}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=171.9,161.1,149.2$, 138.0, 135.0, 123.1, 121.3, 81.4, 76.0, 48.1, 47.2, 44.9, 18.6, 16.5, 15.1, 12.0; IR (film): $\tilde{v}=3295$, 2972, 2926, 2870, 1651, 1530, 1450, 1380, 1242, $1009 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{I}$ $\left[M^{+}+\mathrm{Na}\right]: 443.08021$, found: 443.08020 .

Compound 27a: Prepared analogously as a colorless oil (103 mg, 98\%). $[\alpha]_{D}^{20}=+37.5\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$);

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=8.18$ (s, 1 H), 6.98 (brs, 1 H), 6.68 (brs, $1 \mathrm{H}), 6.55$ (dd, $J=14.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.09(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}$, $1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$,
75 MHz): $\delta=168.9,162.1,149.2,138.3,134.8,123.1,121.6,81.3,75.9,47.3,44.7,42.1,16.5,15.1$, 12.0; IR (film): $\tilde{v}=3299,2962,2927,2870,1656,1536,1384,1242,1008,948 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{I}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 429.06456, found: 429.06497.

Compound 27c: Prepared analogously as a colorless oil (111 mg, 86\%). $[\alpha]_{D}^{20}=+5.0\left(c=0.02, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.10(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.54$ (brdd, $J=14.5,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.17-6.05(\mathrm{~m}, 4 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 1 \mathrm{H})$, 3.85-3.71 (m, 3H), 3.13-3.03 (m, 2H), 2.44-2.35 (m, 1H), 1.69 (s, 3H), $1.64(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ $170.7,161.2,149.2,138.2,137.0,134.7,129.7,129.0,127.4,123.1,121.8,81.3,75.9,53.7,47.4$, 44.8, 38.7, 16.5, 15.1, 12.0; IR (film): $\tilde{v}=3286,2956,2923,2854,1651,1540,1455,1380,1232$, $1009 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{I}\left[M^{+}+\mathrm{Na}\right]$: 519.11151, found: 519.11163.

Compound 27d: Prepared analogously as a colorless oil (115 mg, 92\%). $[\alpha]_{D}^{20}=-10.0$ (c=0.02,
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.15(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dd}, \mathrm{J}=14.5,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.19-6.11 (m, 3H), 4.68-4.64 (m, 1H), $3.86(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (d, J = 7.9 Hz, 1H), 2.59-2.48 (m, 2H), 2.43-2.37 (m, 1H), 2.15-2.07 $(\mathrm{m}, 4 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=171.0,161.4,149.2,138.2,134.8,123.1,121.6,81.4,75.9,51.3,47.3,44.8,32.1,30.5$, 16.5, 15.4, 15.2, 12.1; IR (film): $\tilde{v}=3286,2962,2916,2865,1651,1532,1441,1383,1236,1008$ cm^{-1}; HRMS (ESI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{IS}\left[M^{+}+\mathrm{Na}\right]$: 503.08358, found: 503.08353.

Compound 27e: Prepared analogously as a colorless oil (185 mg, 98\%). $[\alpha]_{D}^{20}=+32.3$ (c = 1.05,
 $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83-7.76(\mathrm{~m}, 2 \mathrm{H})$, $7.55-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{bs}, 1 \mathrm{H}), 6.50(\mathrm{dd}$, $J=14.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.09(\mathrm{~m}, 3 \mathrm{H}), 4.60-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (dd, $J=9.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{dd}, \mathrm{J}=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ (s, 9H), $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.3,167.2,148.4,137.4,134.4$, $133.6,131.9,128.6,127.0,123.1,121.7,81.1,76.1,62.7,54.4,47.2,44.6,25.8,18.0,16.2,15.0,11.8$, -5.4, -5.6; IR (film): $\tilde{v}=3305,2954,2928,2857,1639,1535,1485,1253,1110,836,778 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{~N}_{2}$ ISi [$\left.M^{+}+\mathrm{Na}\right]$: 649.19291, found: 649.19265.

Building Blocks for the C27-Desmethyl Analogue 40 (Scheme 5)

Methyl N, N-bis(tert-butoxycarbonyl)-6-amino-2-methyl-hex-2,4-dienoate (32): A 50 mL Schlenk tube was charged with alkene $31(1.45 \mathrm{~g}, 5.63 \mathrm{mmol}),{ }^{4}$ bromide $30(2 \mathrm{~g}$, $\left.11.27 \mathrm{mmol}),{ }^{3} \mathrm{Pd}(\mathrm{OAc})_{2}(37.8 \mathrm{mg}, 0.169 \mathrm{mmol}), \mathrm{P}(o-t o l)\right)_{3}(102.75 \mathrm{mg}, 0.338$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.6 \mathrm{~mL}, 11.27 \mathrm{mmol})$. The resulting yellow suspension was stirred at $100^{\circ} \mathrm{C}$ whereby the mixture slowly became homogeneous. After 24 h , the reaction was quenched with $\mathrm{NaOH}(3 \mathrm{M}, 10$ mL) and extracted with tert-butyl methyl ether $(3 \times 10 \mathrm{~mL})$, the combined extracts were washed with

[^3]brine (50 mL), dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1) to give diene $32(E / Z=7: 1)$ as a bright yellow oil (1.67 g , $\left.87 \%) .{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,300 \mathrm{MHz}\right): \delta=7.11(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=14.2,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (td, $J=15.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 75.5 MHz): $\delta=168.7,152.1,137.4,136.2,127.1,82.5,51.7,47.7,28.0,12.5$; IR (neat): $\tilde{v}=2980$, 1748, 1708, 1434, 1366, 1341, 1222, 1136, $1101 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 355 ($M^{+}, 0.2$), 299 (5), 284 (3), 243 (17), 199 (82), 125 (86), 57 (100); HRMS (ESI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{6}\left[M^{+}+\mathrm{Na}\right]: 378.18871$, found: 378.18851.

Methyl N-(trimethylsilylethoxycarbonyl)-6-amino-2-methyl-hex-2,4-dienoate (S-2): Trifluoroacetic

acid ($44 \mathrm{~mL}, 586 \mathrm{mmol}$) was added dropwise to a solution of compound 32 ($5.2 \mathrm{~g}, 14.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling bath was removed and stirring continued for 0.5 h . The solvents were evaporated and the resulting product was dried in high vacuum for 1 h . The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(14.2 \mathrm{~mL}, 102.2$ mmol) and 4-nitrophenyl-2-trimethylsilylethyl-carbonate ($5 \mathrm{~g}, 17.5 \mathrm{mmol}$) were added, and the resulting yellow solution was stirred for 24 h before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the crude product was purified by flash chromatography (hexanes/acetone, 20:1 \rightarrow 10:1, buffered with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound S-2 as a pale yellow oil ($3.39 \mathrm{~g}, 76 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.15(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (ddt, $J=$ $15.1,11.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{td}, J=15.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{bs}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right)$: $\delta=168.9,156.8,138.0,137.5,127.6,126.6,63.4,52.0,43.0,18.1,12.8,-1.4$; IR (neat): $\tilde{v}=3352$, 2952, 1694, 1644, 1521, 1435, 1246, 1224, 1104, $834 \mathrm{~cm}^{-1}$; MS (ESI) m/z: 322.08 ($M^{+}+\mathrm{Na}$).
\boldsymbol{N}-(Trimethylsilylethoxycarbonyl)-6-amino-2-methyl-hex-2,4-dien-1-ol (S-3): Dibal-H (16.2 mL, 1 M in hexane) was added dropwise to a solution of compound S-2 (2.29 g, 7.35
 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for 15 min at that temperature, the cooling bath was removed and the reaction was quenched with EtOAc (1 mL) and an aqueous solution of Rochelle salt ($1 \mathrm{~m}, 20 \mathrm{~mL}$). After stirring at room temperature for 2 h , the aqueous phase was extracted with EtOAc ($2 \times 5 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4} and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 4:1 $\rightarrow 2: 1$) to give S-3 as a colorless oil ($1.85 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=6.41$ (dd, $J=11.0$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.04(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{td}, J=15.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{bs}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{bs}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 0.04 (s, 9H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=156.9,138.3,129.7,127.7,123.6,68.2,63.3,43.2,18.0$, 14.2, -1.4; IR (neat): $\tilde{v}=3332,2953,1692,1517,1424,1248,1177,1061,954,834 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): $m / z(\%): 271\left(M^{+}, 0.2\right), 256(0.2), 225(2), 210(2), 180(4), 166(10), 153$ (3), 134 (7), 118 (30), 73 (100); HRMS (ESI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 294.14959, found: 299.14992.

Compound S-4: MnO_{2} ($35 \mathrm{~g}, 409 \mathrm{mmol}$) was added to a solution of alcohol $\mathrm{S}-3(1.85 \mathrm{~g}, 6.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and the resulting suspension was stirred for 2 h . Insoluble residues were filtered off through a pad of Celite, which was carefully rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined filtrates were evaporated to give the corresponding crude aldehyde 33 as a colorless oil, which was used immediately in the next step.
$\mathrm{PPh}_{3}(70.7 \mathrm{mg}, 0.27 \mathrm{mmol})$ was added to a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(60.5 \mathrm{mg}, 0.27 \mathrm{mmol})$ in $\mathrm{THF}(44 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ before compound $\mathbf{1 3}(2 \mathrm{~g}, 6.5 \mathrm{mmol})$ and a solution of the crude aldehyde in THF (10 mL) were added. A solution of $\mathrm{ZnEt}_{2}(1.0 \mathrm{M}$ in hexanes, 16.2 mL) was then slowly introduced and the resulting mixture stirred at that temperature for 30 min before it was warmed to $-20^{\circ} \mathrm{C}$ over a period of 1 h . Stirring was continued overnight at $-20^{\circ} \mathrm{C}$ before the reaction was carefully quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The resulting suspension was
 filtered, the aqueous phase extracted with EtOAc ($2 \times 10 \mathrm{~mL}$), the combined organic layers were dried over MgSO_{4}, filtered and evaporated, and the residue purified by flash chromatography (hexanes/EtOAc, 10:1) to give product $\mathrm{S}-4$ as a colorless oil ($1.62 \mathrm{~g}, 50 \%$ over 2 steps). $[\alpha]_{D}^{20}=+50.5$ ($c=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=6.41(\mathrm{ddt}, J=15.1,10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{dt}, \mathrm{J}=15.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 3 \mathrm{H}), 2.74$ $(\mathrm{m}, 1 \mathrm{H}), 2.28(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 21 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=156.8,137.6,130.5,127.4,126.6,110.1$, 83.7, 80.5, 63.3, 43.2, 33.2, 18.8, 18.1, 18.1, 12.4, 11.6, -1.4; IR (neat): 3335, 2943, 2863, 2161, 1697, 1513, 1462, 1249, 1036, 858, $835 \mathrm{~cm}^{-1}$; MS (ESI) m / z (MeOH): 502.34 ($\mathrm{M}^{+}+\mathrm{Na}$); HRMS (ESI) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{49} \mathrm{NO}_{3} \mathrm{Si}_{2}\left[M^{+}+\mathrm{Na}\right]: 502.31432$, found: 502.31474 .

Compound 34: A solution of TBAF (1 M in THF, 2.19 mL) was added in 3 portions over 1 h to a solution of compound $\mathrm{S}-4(1.0 \mathrm{~g}, 2.09 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was
 stirred at that temperature for 30 minutes before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc $(5 \mathrm{~mL})$, the combined organic layers were washed with brine (10 mL), dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 4:1 \rightarrow 2:1) to give product 34 as a colorless oil ($552 \mathrm{mg}, 82 \%$). $[\alpha]_{D}^{20}=+13.3$ ($c=$ $\left.1.065, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=6.41(\mathrm{ddt}, J=15.1,10.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}, J=15.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 3 \mathrm{H}), 2.74$ (dquint., J = 7.1, 2.4 Hz, 1H), $2.23(\mathrm{bs}, 1 \mathrm{H}), 2.18(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.97(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$; $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CD2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=156.8,137.4,130.9,127.2,126.9$, 86.1, 80.6, 70.9, 63.3, 43.1, 31.7, 18.0, 17.8, 12.1, -1.4; IR (neat): $\tilde{v}=3309,2953,1694,1517,1452$, 1248, 1058, 965, 858, $836 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 346.18089, found: 346.18134.

Compound 36: n BuLi (1.6 m in hexane, $0.7 \mathrm{~mL}, 1.12 \mathrm{mmol}$) was added to a solution of $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}(0.65$ $\mathrm{g}, 1.12 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $-40^{\circ} \mathrm{C}$ for 20 min . The
resulting bright yellow solution was cooled to $-78^{\circ} \mathrm{C}$ before $\mathrm{CuCN}(99.6 \mathrm{mg}, 1.12 \mathrm{mmol}$) was added as a solid. The cooling bath was removed and stirring was continued until all solid materials had dissolved to give a bright yellow homogeneous solution. The resulting lower-order cyanocuprate was stirred at room temperature for 1 h before a solution of alkyne $34(90 \mathrm{mg}, 0.28 \mathrm{mmol})$ in THF (2 mL) was introduced. After 10 min , the reaction was quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$ and diluted with a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. After stirring at room temperature, the resulting blue aqueous phase was extracted with tert-butyl methyl ether ($3 \times 2 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1:0 $\rightarrow 6: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give alkenyl stannane 35 as a colorless oil ($159 \mathrm{mg}, 92 \%$).

A solution of $\mathrm{I}_{2}(69 \mathrm{mg}, 0.271 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.7 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ to
 a solution of stannane $35(159 \mathrm{mg}, 0.258 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$. The resulting brown mixture was stirred at room temperature for 10 min before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 2 \mathrm{~mL}$), the combined organic phases were dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 10:1 \rightarrow 4:1, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give iodide 36 as a colorless oil ($110 \mathrm{mg}, 95 \%$). $[\alpha]_{D}^{20}=+20\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=6.53(\mathrm{dd}, J=14.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}$, $J=15.1,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dt}, J=15.1,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.80(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (bs, 1H), $1.71(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100\right.$ MHz): $\delta=156.8,149.0,138.3,130.7,127.3,126.8,80.9,76.0,63.3,44.8,43.1,18.0,16.7,12.1,-1.4 ;$ IR (neat): $\tilde{v}=3353,2955,1698,1521,1249,1060,964,859,837 \mathrm{~cm}^{-1} ; \mathrm{MS}(E I): m / z$ (\%): 451 (0.1, M^{+}), 436 (0.3), 270 (2), 242 (10), 181 (16), 169 (41), 152 (38), 73 (100); HRMS (ESI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{ISi}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 474.09319$, found: 474.09348 .

Building Blocks for the Preparation of Analogue 51 with the Flexible Spacer (Scheme 6)

Compound 42: $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL}, 28.5 \mathrm{mmol})$ and 4-nitrophenyl-2-trimethylsilylethyl carbonate ($3.1 \mathrm{~g}, 10.9$ $\mathrm{mmol})$ were added to a solution of compound 41 ($1.45 \mathrm{~g}, 7.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the resulting yellow solution was stirred for 20 h . For work up, the mixture was extracted with aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to remove the nitrophenol before it was washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated and the residue purified by flash chromatography (hexane/EtOAc, 4:1) to give compound 42 as a pale yellow oil ($2.24 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=4.69(\mathrm{bs}, 1 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.27$ $(\mathrm{m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=174.2,157.0,63.0,51.6$, 41.0, 34.2, 30.1, 26.6, 24.9, 18.1, -1.4; IR (film): $\tilde{v}=3343,2951,1696,1526,1437,1247,1167,1059$, 945, 858, 834, $768 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 312.16016, found: 312.16029; elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}$: C 53.94, H 9.40; found: C 53.80, H 9.53.

Compound 43: Dibal-H ($5.9 \mathrm{~mL}, 1 \mathrm{M}$ in hexane) was slowly added to a solution of compound 42 (1.57 NHTeoc $\mathrm{g}, 5.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and stirring was continued at this temperature for 1 h once the addition was complete. The reaction was then quenched with EtOAc (5 mL) followed by a sat. aq. solution of Rochelle salt (20 mL). After stirring for 1 h , the mixture was partitioned between EtOAc and brine, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, $4: 1)$ to give aldehyde $43(1.01 \mathrm{~g}, 72 \%)$ along with recovered $42(0.2 \mathrm{~g}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $9.71(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{bs}, 1 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) : $\delta=202.7,157.0,62.9,44.0,40.9,30.2,26.6,22.0,18.0,-1.5$; $\mathrm{IR}($ film $): \tilde{v}=3349,2950,1737$, 1725, 1528, 1421, 1365, 1247, 1230, 1216, 1039, 857, 833, 769, $693 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 282.14959, found: 282.14949; elemental analysis calcd (\%) for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}$: C 55.56, H 9.71; found: C 55.33, H 9.62.

Compound 45: $\mathrm{Pd}(\mathrm{OAc})_{2}(30 \mathrm{mg}, 0.133 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(36 \mathrm{mg}, 0.133 \mathrm{mmol})$ were successively
 added to a solution of mesylate $44(430 \mathrm{mg}, 2.9 \mathrm{mmol})^{5}$ in THF $(16 \mathrm{~mL})$ at $78^{\circ} \mathrm{C}$. After stirring for 5 min , a solution of aldehyde 43 ($500 \mathrm{mg}, 1.927$ mmol) in THF (3 mL) was introduced followed by the dropwise addition of $\mathrm{ZnEt}_{2}\left(1.0 \mathrm{M}\right.$ in hexanes, 5.8 mL). After stirring for 30 min at $-78^{\circ} \mathrm{C}$, the solution was warmed to $-20^{\circ} \mathrm{C}$ over a period of 1 h and stirred at this temperature for 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc, the combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 10:1) to give compound 45 as a pale brown oil ($333 \mathrm{mg}, 55 \%, \mathrm{dr} \geq 10: 1$). $[\alpha]_{D}^{20}=-2.3$ $\left(c=1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.62(\mathrm{bs}, 1 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.15$ $(\mathrm{m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{bs}, 1 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.22$ ($\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $0.95(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.8,85.2$, 73.9, 70.9, 62.8, 40.8, 34.9, 32.9, 30.0, 26.6, 25.4, 17.8, 17.3, -1.5; IR (film): $\tilde{v}=3311,2937,1692$, 1526, 1248, 1137, 1042, 857, 834, 768, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 336.19654, found: 336.19687.

Compound 46: DMAP ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$) and pivaloyl chloride ($0.5 \mathrm{~mL}, 4.06 \mathrm{mmol}$) were added to a
 solution of compound 45 ($298 \mathrm{mg}, 0.95 \mathrm{mmol}$) in pyridine (5 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 20 h before it was partitioned between aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 10:1) to give product 46 as a colorless oil ($317 \mathrm{mg}, 84 \%, \mathrm{dr}>$ 10:1). $[\alpha]_{D}^{20}=+9.4\left(c=1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.84(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{bs}, 1 \mathrm{H}), 4.14(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.43(\mathrm{~m}$,

[^4]$2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=178.0,156.8,84.6,74.4,70.0,62.8,40.7,38.9,31.4,30.1,29.9,27.2,26.4$, 25.1, 17.8, 16.6, -1.5; IR (film): $\tilde{v}=3314,2952,1723,1525,1248,1158,1043,858,835,693 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{NO}_{4} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 420.25405$, found: 420.25381 .

Compound S-5: A solution of compound $46(218 \mathrm{mg}, 0.548 \mathrm{mmol})$ in THF (5 mL) was added to a
 solution of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(210 \mathrm{mg}, 0.81 \mathrm{mmol})$ in THF (5 mL) in the dark. The mixture was stirred for 45 min before it was cooled to $0^{\circ} \mathrm{C}$ and a solution of iodine ($200 \mathrm{mg}, 0.79 \mathrm{mmol}$) in THF (5 mL) was added. After 5 min the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. After stirring for 10 min , the mixture was partitioned between EtOAc and brine, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 4:1) to give product S-5 as a colorless syrup ($197 \mathrm{mg}, 69 \%$, $\mathrm{dr}>10: 1$). $[\alpha]_{D}^{20}=-7.3\left(c=1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.40(\mathrm{dd}, J=14.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{bs}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.09-0.92(\mathrm{~m}, 5 \mathrm{H})$, 0.02 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.9,156.7,147.3,75.9,75.1,62.8,44.6,40.6,38.9$, 31.7, 29.9, 27.2, 26.4, 24.9, 17.7, 16.1, -1.5; IR (film): $\tilde{v}=3352,2970,2951,1725,1365,1230,1217$, 1158, 858, 835, 766, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{4}$ ISi $\left[M^{+}+\mathrm{Na}\right]: 548.16636$, found: 548.16594.

Compound 47: $\mathrm{LiHBEt}_{3}(1 \mathrm{M}$ in THF, 0.85 mL) was added dropwise to a solution of compound S-5 (103

$\mathrm{mg}, 0.196 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, the reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture partitioned between EtOAc and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 4:1) to give product 47 as a colorless oil ($78 \mathrm{mg}, 90 \%$, $\mathrm{dr}>$ 10:1). $[\alpha]_{D}^{20}=-14\left(c=1.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.53(\mathrm{dd}, \mathrm{J}=14.5,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H})$, $1.69(\mathrm{bs}, 1 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 0.04 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=157.1,148.7,75.8,74.6,63.0,47.0,41.1,34.9,30.5$, 26.9, 25.7, 18.1, 16.3, -1.4; IR (film): $\tilde{v}=3336,2932,1692,1522,1248,1058,949,857,835,693 \mathrm{~cm}^{-}$ ${ }^{1}$; $\mathrm{HRMS}(E S I): m / z$: calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}_{3}$ ISi [$M^{+}+\mathrm{Na}$]: 464.10884, found: 464.10893.

Compound 48: TBAF (1 m in THF, 0.8 mL) was added dropwise to a solution of compound 47 (76 mg ,
 $0.17 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at ambient temperature before an additional amount of TBAF (1 M in THF, 0.4 mL) was added and stirring continued for 16 h . The mixture was partitioned between EtOAc and aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. The resulting free amine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~mL}\right.$), O-TBS-N-formyl-L-serine ($42 \mathrm{mg}, 0.17 \mathrm{mmol}$), ${ }^{3} \mathrm{HOBt}(24 \mathrm{mg}, 0.18$ mmol), and N -methylmorpholine ($0.055 \mathrm{~mL}, 0.5 \mathrm{mmol}$) were added, and the resulting solution was
cooled to $0^{\circ} \mathrm{C}$ before EDC. $\mathrm{HCl}(44 \mathrm{mg}, 0.22 \mathrm{mmol})$ was introduced. The mixture was stirred for 20 h at ambient temperature before it was partitioned between EtOAc and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexane/EtOAc, 1:1) to give product 48 as a colorless syrup ($66 \mathrm{mg}, 74 \%, \mathrm{dr}>10: 1$). $[\alpha]_{D}^{20}=+4.6\left(c=1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.21(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{dd}, \mathrm{J}=14.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=9.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=$ $9.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{bs}, 1 \mathrm{H}), 1.55-1.28(\mathrm{~m}, 8 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) .0 .09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=169.8,161.3,148.7$, $75.8,74.6,63.3,53.5,47.1,39.8,34.9,29.8,27.1,26.0,25.7,18.4,16.3,-5.3,-5.4 ; \operatorname{IR}(f i l m): \tilde{v}=$ 3307, 2930, 2857, 1650, 1550, 1463, 1378, 1257, 1102, $990,836,778 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{ISi}+\mathrm{Na}: 549.16160\left[\mathrm{M}^{+}+\mathrm{Na}\right]$, found: 549.16112.

Building Blocks for the Preparation of Analogue 59 with an Aromatic Spacer (Scheme 7)

Compound 53: A solution of 3-bromophenylethylamine $52(1.0 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(29 \mathrm{~mL})$ was treated sequentially with $\mathrm{Et}_{3} \mathrm{~N}(702 \mu \mathrm{~L}, 5.0 \mathrm{mmol})$ and 4-nitrophenyl 2(trimethylsilyl)ethyl carbonate ($1.56 \mathrm{~g}, 5.5 \mathrm{mmol}$) and the resulting mixture was stirred for 20 h . This solution was then washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, the organic layer was dried over MgSO_{4} and evaporated, and the residue was purified by flash chromatography ($0-12.5 \%$ EtOAc in hexanes) to give compound 53 as a colorless oil ($1.49 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{brs}, 1 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.38(\mathrm{td}, J=6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=156.8,142.0,132.2,130.5,129.8,129.0,122.7,63.2,42.2,36.2,18.0,-1.5 ; \mathrm{IR}$ (film): $\widetilde{v}=3336,2952,1692,1518,1247,1060,857,835,777,694 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{NSiBr}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 366.04955$, found: 366.04981.

Compound 54: MeLi (2.0 m in $\mathrm{Et}_{2} \mathrm{O}, 2.2 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was added dropwise to a solution of compound $53(1.38 \mathrm{~g}, 4.0 \mathrm{mmol})$ in THF $(150 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for
 15 min , tBuLi (1.5 M in pentane, $2.94 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was slowly introduced and stirring continued for another 15 min before dry DMF ($776 \mu \mathrm{~L}, 10.0$ mmol) was added. After 1 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to reach room temperature over 30 min before the reaction was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with EtOAc, the combined extracts were washed with brine, dried over MgSO_{4} and evaporated, and the residue was purified by flash chromatography ($0-33 \%$ EtOAc in hexanes) to give compound 54 as a colorless syrup $(1.12 \mathrm{~g}, 95 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=9.99(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{brs}, 1 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{td}, J=6.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=192.6,156.8,140.7,137.2$, 135.3, 130.0, 129.6, 128.3, 63.2, 42.2, 36.3, 18.0, -1.5; IR (film): $\widetilde{v}=3341,2952,1694,1524,1248$, 1142, 1060, 859, 837, $693 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NSi}\left[M^{+}+\mathrm{Na}\right]$: 316.13394, found: 316.13385 .

Compound S-6: $\mathrm{Pd}(\mathrm{OAc})_{2}(33 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(38 \mathrm{mg}, 0.15 \mathrm{mmol})$ were added to a solution
 of mesylate $13(1.43 \mathrm{~g}, 4.7 \mathrm{mmol})$ in THF (29 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 5 min , a solution of aldehyde 54 ($861 \mathrm{mg}, 2.9 \mathrm{mmol}$) in THF (10 mL) was introduced, followed by the dropwise addition of $\mathrm{ZnEt}_{2}(1 \mathrm{M}$ in hexane, 8.8 mL). After stirring for 30 min , the solution was warmed up to $-20^{\circ} \mathrm{C}$ and stirring continued overnight at this temperature. The reaction was carefully quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and allowed to reach ambient temperature, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined extracts were washed with brine, dried over MgSO_{4} and evaporated. Purification of the residue by flash chromatography (pentanes $/ \mathrm{Et}_{2} \mathrm{O}, 60: 1 \rightarrow 2: 1$) afforded a separable 1:1 mixture of compound 55 as a colorless oil ($1.19 \mathrm{~g}, 80 \%$). anti-S-6 (561 mg) ${ }^{6}$ analyzed as follows: $[\alpha]_{D}^{20}=-16.7\left(c=0.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10$ (m, 1H) , 4.61 (brs, 1H), $4.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{td}, J=6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.85-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{brs}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 21 \mathrm{H}), 0.96$ $(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.8,141.9,139.0,128.6,128.4,127.2$, 125.1, 109.5, 84.4, 77.4, 63.1, 42.2, 36.9, 36.4, 18.8, 17.9, 17.8, 11.3, -1.3; IR (film): $\tilde{v}=3352,2943$, 2891, 2865, 2162, 1697, 1519, 1463, 1250, 1060, 1039, 859, 837, $676 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{NSi}_{2}\left[M^{+}+\mathrm{Na}\right]: 526.31432$, found: 526.31487.

Compound anti-55: A solution of TBAF (1 M in THF, $890 \mu \mathrm{~L}$) was added to a solution of compound
 anti-S-6 (561 mg, 1.11 mmol$)$ in THF (25 mL) at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the reaction was quenched with sat. aq. NaHCO_{3}, the aqueous phase was extracted with EtOAc, and the combined organic layers were washed with brine, dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 10:1 \rightarrow 1:1) to yield product anti-55 as a colorless oil (318 mg , $82 \%) .[\alpha]_{D}^{20}=+3.3\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10$ $(\mathrm{m}, 1 \mathrm{H}), 4.79(\mathrm{brs}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{td}, J=6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-$ $2.73(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=156.9,142.5,139.4,128.7,128.6,127.4,125.0,85.9,77.3,71.4,63.1$, $42.4,36.5,35.3,18.0,17.6,-1.4$; IR (film): $\tilde{v}=3422,3311,2953,2896,1699,1519,1250,1057,859$, $837 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{NSi}\left[M^{+}+\mathrm{Na}\right]$: 370.18089, found: 370.18122.

Compound S-7: Pivaloyl chloride ($411 \mu \mathrm{~L}, 3.34 \mathrm{mmol}$) was added to a solution of compound anti-55 $(387 \mathrm{mg}, 1.11 \mathrm{mmol})$ and DMAP (10 mg) in pyridine $(4.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The
 mixture was stirred overnight at room temperature before the reaction was quenched with $\mathrm{HCl}(1 \mathrm{M})$. The aqueous phase was extracted with EtOAc, the combined organic layers were washed with sat. aq. NaHCO_{3} and brine, dried over MgSO_{4} and evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 20:1 \rightarrow 8:1) furnished product $\mathbf{S}-7$ as a yellow oil ($298 \mathrm{mg}, 62 \%$). $[\alpha]_{D}^{20}=-27.8$ (c $=$ $0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.30-7.15(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (brs,

[^5]$1 \mathrm{H}), 4.13(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{td}, J=6.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.17(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=177.4,156.9,139.5,139.3,128.9,128.8,127.6,125.2,85.1,77.3,70.8$, 63.1, 42.4, 39.2, 36.5, 32.9, 27.3, 18.1, 17.5, -1.4; IR (film): $\tilde{v}=3311,2956,2901,1723,1523,1479$, 1279, 1250, 1152, 1059, 1034, 859, $838 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{NSi}\left[M^{+}+\mathrm{Na}\right]$: 454.23840, found: 454.23898.

Compound 56: A solution of compound S-7 ($298 \mathrm{mg}, 0.69 \mathrm{mmol}$) in THF (4.6 mL) was added dropwise
 to a suspension of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}(267 \mathrm{mg}, 1.04 \mathrm{mmol})$ in $\mathrm{THF}(6.0 \mathrm{~mL})$ in the dark. After stirring for 1 h , the mixture was cooled to $0^{\circ} \mathrm{C}$ before a solution of iodine ($290 \mathrm{mg}, 1.14 \mathrm{mmol}$) in THF (4.6 mL) was added dropwise until a pale yellow color persisted. After stirring for 5 min , the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The aqueous phase was extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 10:1 $\rightarrow 6: 1$) to give product 56 as a pale yellow oil ($260 \mathrm{mg}, 67 \%$). $[\alpha]_{D}^{20}=+7.9\left(c=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}$, $3 \mathrm{H}), 6.47$ (dd, $J=14.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (dd, $J=14.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (brs, $1 \mathrm{H}), 4.11(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{td}, J=6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 1 \mathrm{H})$, $1.20(\mathrm{~s}, 9 \mathrm{H}), 0.97-0.91(\mathrm{~m}, 5 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=177.3,156.8,147.7$, $139.9,128.8,128.8,127.5,125.2,78.1,76.6,66.0,47.1,42.5,39.1,36.6,27.3,18.1,16.3,15.5,-1.4$; IR (film): $\tilde{v}=3336,2955,2902,1723,1521,1279,1250,1152,1059,979,946,859,837 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{NSil}\left[M^{+}+\mathrm{Na}\right]$: 582.15071, found: 582.15090.

Compound S-8: A solution of $\mathrm{LiHBEt}_{3}(1 \mathrm{M}$ in hexanes, 1.60 mL) was added to a solution of compound 56 ($255 \mathrm{mg}, 0.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h , the
 reaction was quenched with EtOAc and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase was washed with brine, dried over MgSO_{4} and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, 10:1 \rightarrow 3:1) to give product $\mathrm{S}-8$ as a colorless oil ($176 \mathrm{mg}, 81 \%$). $[\alpha]_{D}^{20}=-59.4\left(c=1.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{dd}, \mathrm{J}=14.5,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.10 (dd, $J=14.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{brs}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{td}$, $J=6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.47(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=156.9,148.7,143.2,139.6,128.8,128.6,127.4$, 125.1, 77.8, 76.4, 63.1, 48.8, 42.5, 36.6, 18.1, 16.3, -1.4; IR (film): $\tilde{v}=3357,2953,2896,1694,1519$, 1249, 1060, 949, 859, $837 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NSil}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 498.09319, found: 498.09377.

Compound 57: A solution of TBAF (1 M in THF, $517 \mu \mathrm{~L}$) was slowly added to a solution of compound S-8 ($61.4 \mathrm{mg}, 0.129 \mathrm{mmol}$) in THF (1.3 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature before a second batch of TBAF ($517 \mu \mathrm{~L}, 1 \mathrm{M}$ in THF) was added. After additional 8 h , the

mixture was diluted with EtOAc and extracted with aq. sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The organic layers were washed with brine, dried over MgSO_{4}, and concentrated.

The resulting free amine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.4 mL). O-TBS-N-formyl-L-serine ($35.1 \mathrm{mg}, 0.142 \mathrm{mmol}$), HOBt ($19.2 \mathrm{mg}, 0.142 \mathrm{mmol}$), and N -methylmorpholine ($41.1 \mu \mathrm{~L}, 0.375 \mathrm{mmol}$) were successively added and the mixture was cooled to $0^{\circ} \mathrm{C}$. EDC $\cdot \mathrm{HCl}(32.2 \mathrm{mg}, 0.168 \mathrm{mmol})$ was then introduced and stirring continued at room temperature for 20 h . The mixture was diluted with EtOAc and extracted with brine, the organic phase was dried over MgSO_{4} and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 3:1 \rightarrow 1:5) to give product 57 as a colorless oil (39 mg, 54\%). $[\alpha]_{D}^{20}=-27.8$ (c=1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.11(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.58$ (brdd, J = 14.4, 8.3 Hz, 2H), 6.44 (brs, 1H), 6.07 (dd, J = 14.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.41-4.35$ (m, 2H), 4.00 (dd, $J=9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.54-2.50(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.86(\mathrm{~m}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ 169.6, 161.4, 148.8, 143.4, 139.3, 128.7, 128.3, 127.7, 125.3, 77.7, 76.2, 63.0, 53.6, 48.5, 41.2, 35.9, 25.9, 18.4, 16.3, -5.4, -5.5; IR (film): $\tilde{v}=3309,2954,2928,2857,1647,1533,1383,1253,1107,953$, 835, 777, $707 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Sil}\left[M^{+}+\mathrm{Na}\right]$: 583.14596, found: 583.14548.

Building Blocks for the Preparation of Analogue 68 devoid of the Michael Acceptor Unit and the 1,4-Diene next to the Lactone Linkage (Scheme 9)

Methyl 6-iodohex-5-enoate (63): CuCN ($45 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a solution of $t \mathrm{BuPh}_{2} \mathrm{SiLi}$ in THF ($0.5 \mathrm{M}, 1 \mathrm{~mL}, 0.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 20 min at this temperature, methyl hex-5-ynoate 62 ($31.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added neat and stirring was continued for 15 min . $\mathrm{MeOH}(0.2 \mathrm{~mL})$ was then added, followed by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether (2 mL), the combined organic layers were washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated.

A solution of $\mathrm{ICl}(76.2 \mathrm{mg}, 0.469 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of the crude alkenyl silane thus obtained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, the combined organic phases were washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated, and the residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}, 1: 0 \rightarrow 95: 5$) to give iodide 63 as a colorless oil ($57 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.49(\mathrm{dt}, J=14.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.34$ (t, J = 7.4 Hz, 2H), 2.12 (dt, J = 7.6, 7.4 Hz, 2H), 1.76 (quint., J = 7.3 Hz, 2H).
(S)-Methyl 9-methoxy-7-methyldodeca-5,7,11-trienoate (S-9): A 10 mL Schlenk tube was charged
 with alkenyl stannane 64 ($133 \mathrm{mg}, 0.319 \mathrm{mmol}$), ${ }^{3}$ alkenyl iodide 63 (76 $\mathrm{mg}, 0.29 \mathrm{mmol}),\left[\mathrm{Ph}_{2} \mathrm{PO}_{2}\right]\left[\mathrm{NBu}_{4}\right](160 \mathrm{mg}, 0.348 \mathrm{mmol})$ and DMF (0.6 mL). The mixture was vigorously stirred while $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13.4 \mathrm{mg}$,
0.0116 mmol) and copper thiophene-2-carboxylate (CuTC, $66 \mathrm{mg}, 0.348 \mathrm{mmol}$) were successively added, causing an immediate color change to black. After stirring for 10 min , the reaction was quenched at $0^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and the resulting suspension was filtered through a pad of Celite, which was carefully rinsed with EtOAc (20 mL). The aqueous phase was extracted with EtOAc (2×1 $\mathrm{mL})$, the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, brine (5 mL), dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, $1: 0 \rightarrow 9: 1$) to afford ester $\mathrm{s}-9$ as a colorless oil ($48 \mathrm{mg}, 66 \%$). $[\alpha]_{D}^{20}=-29.6(c=1.2$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.10(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.60(\mathrm{~m}, 1 \mathrm{H})$, $5.22(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.30(\mathrm{~m}$, 3H), 2.28-2.10 (m, 3H), 1.78-1.70 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=174.5,137.4,135.7,135.6$, 131.4, 129.4, 117.1, 77.5, 56.3, 52.0, 40.8, 34.1, 32.9, 25.4, 13.6; IR (film): $\tilde{v}=2933,2818,1737$, 1641, 1436, 1242, 1193, 1152, 1092, 964, $914 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}\left[M^{+}+\mathrm{Na}\right]$: 275.16177, found: 275.16147.
(S)-9-Methoxy-7-methyldodeca-5,7,11-trienoic acid (65): A solution of LiOH (3 M in $\mathrm{H}_{2} \mathrm{O}, 0.38 \mathrm{~mL}$,
 1.14 mmol) was added to a solution of compound $\mathrm{S}-9$ ($48 \mathrm{mg}, 0.19$ mmol) in $\mathrm{MeOH} / \mathrm{THF}(1: 1,1 \mathrm{~mL})$ and the resulting mixture was stirred for 24 h before it was acidified to $\mathrm{pH} \approx 3$ with 1 m aq. $\mathrm{HCl}(1.2 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 2 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, 9:1 \rightarrow 1:1) to give acid 65 as a colorless oil ($32 \mathrm{mg}, 75 \%$). $[\alpha]_{D}^{20}=-$ $33.2\left(c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.11(\mathrm{~d}, \mathrm{~J}=15.6,1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~m}, 1 \mathrm{H})$, $5.25(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.13(\mathrm{~m}$, 3 H), 1.83-172 ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=179.1,136.6,135.3,134.5,130.6,128.2,116.8$, 76.9, 55.9, 40.0, 33.3, 32.0, 24.4, 13.1; IR (film): $\widetilde{v}=3077,2980,2932,1737,1708,1440,1414,1238$, 1093, $965,915 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}-\mathrm{H}: 237.14962$ [$M^{-}-\mathrm{H}$]; found: 237.14930.

Building Blocks for the Preparation of Analogue 74 Devoid of the C5-C6 Double Bond (Scheme 10)

Compound 70. Hünig base ($2.5 \mathrm{~mL}, 14.6 \mathrm{mmol}$) was added to a mixture of $\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Me}) \mathrm{COOEt}$ $(2.8 \mathrm{~mL}, 12.86 \mathrm{mmol})$ and $\mathrm{LiCl}(500 \mathrm{mg}, 11.79 \mathrm{mmol})$ in $\mathrm{MeCN}(60 \mathrm{~mL})$ at
 $0^{\circ} \mathrm{C}$ and the resulting suspension was stirred at ambient temperature for 20 min before a solution of compound $69(1.41 \mathrm{~g}, 9.9 \mathrm{mmol}$, containing 5% of the Z-isomer $)^{7}$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. After stirring overnight at ambient temperature, the mixture was partitioned between brine and EtOAc, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 1:1) to give product 70 as a colorless syrup ($1.906 \mathrm{~g}, 85 \%$, containing 5% of

[^6]inseparable (7Z)-isomer). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.72(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 4 \mathrm{H})$, 2.16-2.08 (m, 2H), 2.01 (t, J = 7.6 Hz, 2H), 1.79 (s, 3H), 1.63 (s, 3H), 1.59-1.50 (m, 2H), 1.26 (t, J=7.0 $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.2,141.8,138.7,127.9,124.0,60.3,59.1,39.1,28.1,26.4$, 16.0, 14.2, 12.2; IR (film): $\tilde{v}=3420,2923,1706,1647,1445,1367,1255,1174,1122,1080,1001$, $774 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}\left[M^{+}+\mathrm{Na}\right]$: 249.14612, found: 249.14626.

Compound 71: $\mathrm{MnO}_{2}(1.5 \mathrm{~g}, 17 \mathrm{mmol})$ was added to a solution of compound 70 ($163 \mathrm{mg}, 0.72 \mathrm{mmol}$)
 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) and the resulting mixture was stirred for 15 h before it was filtered through a pad of Celite. The filtrate was evaporated and the resulting aldehyde was directly used in the next step ($148 \mathrm{mg}, 92 \%$).

Allylmagnesium bromide (1 M in $\mathrm{Et}_{2} \mathrm{O}, 1.25 \mathrm{~mL}$) was added over 30 min to a solution of (-)- $\mathrm{lpc}_{2} \mathrm{BOMe}$ ($410 \mathrm{mg}, 1.29 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Stirring was continued for 30 min at $0^{\circ} \mathrm{C}$ and for 1 h at ambient temperature. The resulting salts were filtered off under Ar through a pad of Celite and the filtrate was cooled to $-78^{\circ} \mathrm{C}$ before a solution of the crude aldehyde ($148 \mathrm{mg}, 0.66 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (1 mL) was added dropwise over the course of 30 min . After stirring at $-78^{\circ} \mathrm{C}$ for 2 h , the mixture was allowed to reach ambient temperature before the reaction was quenched with a mixture of $\mathrm{H}_{2} \mathrm{O}_{2}(0.5$ $\mathrm{mL}, 30 \% \mathrm{w} / \mathrm{w}$) and $\mathrm{NaOH}(3 \mathrm{M}, 1.2 \mathrm{~mL})$. The resulting mixture was stirred at reflux temperature for 1 h and at ambient temperature for another 14 h before it was partitioned between EtOAc and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (hexanes/EtOAc, 4:1) to give the corresponding homoallylic alcohol which was contaminated with by-products derived from the IPC-borane reagent.

This material was added to a mixture of Meerwein salt ($130 \mathrm{mg}, 0.875 \mathrm{mmol}$) and proton sponge ($217 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the mixture allowed to stir at ambient temperature for 3 h . After filtration through a pad of Celite, a standard extractive work up followed by purification of the residue by flash chromatography (hexanes/EtOAc, 10:1) afforded compound 71 as a colorless oil (50 mg , 27% over 2 steps, containing 5% of the corresponding (7Z)-isomer). Isomerically pure E-71 was obtained by preparative HPLC, which analyzed as follows: $[\alpha]_{D}^{20}=-8.7\left(c=0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.74(\mathrm{~m}, 1 \mathrm{H}), 5.77$ $(\mathrm{m}, 1 \mathrm{H}), 5.09-4.96(\mathrm{~m}, 3 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.00$ $(\mathrm{m}, 5 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.2,141.7,139.1,134.7,128.0,125.8,116.6,76.9,60.3,55.6,40.1,39.2,28.1$, 26.6, 16.6, 14.2, 12.3; IR (film): $\tilde{v}=2980,2934,1709,1648,1446,1367,1257,1174,1094,913,774$ cm^{-1}; HRMS (ESI): m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}\left[M^{+}+\mathrm{Na}\right]$: 303.19306, found: 303.19332.

Compound 72: $\mathrm{LiOH}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.5 \mathrm{~mL}\right)$ was added to a solution of ester $71(22 \mathrm{mg}, 0.078 \mathrm{mmol})$ in
 a mixture of $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and THF $(0.4 \mathrm{~mL})$ and the resulting solution was stirred for 20 h . For work up, the mixture was acidified with $\mathrm{HCl}(0.5$ M) until a pH of ca. 2 was reached, the aqueous phase was extracted with EtOAc, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Acid 72 could be used in the next step without further purification (19 mg, 97\%). $[\alpha]_{D}^{20}=-17.3\left(c=0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.91(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.96(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.26-2.02(\mathrm{~m}, 5 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ 173.5, 145.3, 139.5, 135.5, 127.5, 126.4, 116.6, 77.2, 55.7, 40.5, 39.6, 28.7, 26.9, 16.7, 12.2; IR (film): $\tilde{v}=2931,1684,1641,1421,1284,1092,961,913 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right.$ + Na]: 275.16176, found: 275.16191 .

Building Blocks for the C17-Desmethoxy Analogue 81 (Scheme 11)

(2Z)-Methyl 2-methyloct-2-en-7-ynoate (76): Pyridine $\cdot \mathrm{SO}_{3}(3.65 \mathrm{~g}, 23 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to a
 solution of hex-5-yn-1-ol (75) ($0.5 \mathrm{~g}, 5.1 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(3.2 \mathrm{~mL}, 23 \mathrm{mmol})$ and DMSO ($2 \mathrm{~mL}, 23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 30 min . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$, the combined organic layers were washed with brine (10 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and carefully evaporated to give crude hex-5-yn-1-al ($339 \mathrm{mg}, 3.53 \mathrm{mmol}$) as a colorless oil.

In a separate Schlenk tube a solution of KHMDS in toluene ($7.1 \mathrm{~mL}, 3.56 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ to a solution of $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Me}(1.24 \mathrm{~g}, 3.71 \mathrm{mmol})$ and 18 -crown-6 ($740 \mathrm{mg}, 2.82$ mmol) in THF (10 mL). After 30 min , a solution of the crude hex-5-yn-1-al in THF (5 mL) was introduced and stirring continued at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$, the resulting mixture was allowed to stand at room temperature and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated. Purification of the residue by flash chromatography (hexanes/EtOAc, 30:1) afforded ester 76 as a colorless oil ($566 \mathrm{mg}, 66 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=5.90(\mathrm{qt}, J=1.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{dt}, J=1.1,7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.18(\mathrm{dt}, J=2.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{q}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.61$ (quint., $J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=168.5,141.9,128.2,84.5,68.6,51.4,29.0,28.7,20.8$, 18.4; IR (film): $\widetilde{v}=2951,1714,1647,1455,1434,1367,1240,1194,1124 \mathrm{~cm}^{-1}$; MS (EI): $\mathrm{m} / \mathrm{z}(\%): 166$ ($0.4, M^{+}$), 165 (3), 151 (3), 138 (28), 127 (75), 107 (100), 95 (73), 91 (61), 79 (65); HRMS (CI, i-butane) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}\left[M^{+}+\mathrm{H}\right]$: 167.10721, found: 167.10725.
(2Z)-2-Methyloct-2-en-7-yn-1-ol (S-10): A solution of Dibal-H in hexane ($1 \mathrm{M}, 5.9 \mathrm{~mL}, 5.92 \mathrm{mmol}$)
 was slowly added to a solution of ester $\mathbf{7 6}(493 \mathrm{mg}, 2.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred 30 min at $-78^{\circ} \mathrm{C}$ before it was quenched with EtOAc (5 mL). The cooling bath was removed and a sat. aq. solution of Rochelle salt was added (20 mL). The mixture was stirred at room temperature until a clean separation of the phases was reached. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to yield alcohol $\mathbf{S - 1 0}$ as a colorless oil (409 mg). The crude product was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=5.25(\mathrm{tt}, J=0.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{dt}, J=2.6,7.1 \mathrm{~Hz}, 4 \mathrm{H})$,
$1.99(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{q}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{bs}, 1 \mathrm{H}), 1.55$ (quint., $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{CNMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=136.2,127.2,84.7,68.7,61.5,28.9,26.6,21.4,17.9$; IR (film): $\tilde{v}=3300,2937$, 2862, 1433, 1378, 1247, $1002 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 137 (1.6), 123 (19), 109 (21), 105 (35), 95 (34), 91 (38), 81 (62), 79 (80), 71 (38), 67 (54), 43 (100); HRMS (Cl, i-butane) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}\left[M^{+}+\mathrm{H}\right]$: 139.11229, found: 139.11226.
(2Z,7E)-2-Methyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-2,7-dien-1-ol (77): To a
 solution of S-10 ($300 \mathrm{mg}, 2.17 \mathrm{mmol}$) in THF (4 mL) was added pinacol borane ($1 \mathrm{~mL}, 6.52 \mathrm{mmol}$) and 9-BBN ($52.6 \mathrm{mg}, 0.217 \mathrm{mmol}$). The mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL). The aqueous phase was extracted with tert-butyl methyl ether (3 $\times 3 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4}, filtered and evaporated to give a crude colorless oil. Purification by flash chromatography (hexanes/acetone, 10:1) afforded alcohol 77 as a colorless oil ($459 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=6.52(\mathrm{td}, J=17.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (td, $J=$ $17.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{dt}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.46 (quint., $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.23(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} N M R\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=154.4$, 135.3, 128.1, 83.3, 61.6, 35.6, 29.0, 27.3, 24.9, 21.3; IR (film): $\tilde{v}=3435,2977,2928,1638,1362$, 1318, 1144, 1002, $970 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~B}\left[M^{+}+\mathrm{Na}\right]$: 289.19455, found: 289.19462.
(2Z,7E)-2-Methyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-2,7-dien-1-ol (S-11): Dess-
 Martin periodinane ($804 \mathrm{mg}, 1.89 \mathrm{mmol}$) was added in one portion to a solution of alcohol $77(459 \mathrm{mg}, 1.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, the mixture was diluted with pentanes before it was filtered through a pad of Celite. The filtrate was evaporated to give a crude white solid, which was purified by flash chromatography (hexanes/acetone, 10:1) to give aldehyde S-11 as a colorless oil ($352 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300\right.$ $\mathrm{MHz}): \delta=10.10(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{td}, J=17.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.41$ (td, J=17.9, 1.5 Hz , $1 \mathrm{H}), 2.56(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{dt}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61$ (quint., $J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}$): $\delta=191.3,153.5,149.3,136.6,83.3,35.4,28.6,26.5$, 25.0, 16.5; MS (EI): m/z (\%): 264 (11, M $^{+}$), 249 (8), 235 (3), 221 (9), 206 (16), 181 (22), 164 (73), 149 (48), 136 (29), 120 (50), 101 (61), 93 (39), 83 (69), 41 (100); IR (film): $\tilde{v}=2978,2928,1677,1638$, 1362, 1321, 1144, 996, $970 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BO}_{3}\left[M^{+}+\mathrm{Na}\right]$: 287.17944, found: 287.17884.
(3Z,8E)-3-Methyl-9-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-1,2,7-triene (78): nBuLi (1.6
 M in hexanes, $0.9 \mathrm{~mL}, 1.46 \mathrm{mmol})$ was added dropwise to a suspension of methyltriphenylphosphonium bromide ($569 \mathrm{mg}, 1.6 \mathrm{mmol}$) in THF (3 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was allowed to reach ambient temperature. After stirring for 30 min , the orange solution was cooled again to $-78^{\circ} \mathrm{C}$ before a solution of aldehyde $77(352 \mathrm{mg}, 1.33 \mathrm{mmol})$ in THF (3 mL) was slowly added. The mixture
was warmed to ambient temperature over the course of 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, the combined extracts were dried over MgSO_{4} and evaporated. Purification of the residue by flash chromatography (pentane/Et $2 \mathrm{O}, 95: 5$) afforded diene 78 as a colorless oil ($209 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=6.77$ (ddd, $\left.J=0.75,10.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.57(\mathrm{td}, J=6.4,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.34$ $(\mathrm{m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{td}, J=1.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.21(\mathrm{~m}, 4 \mathrm{H}), 1.80(\mathrm{q}, J=1.1 \mathrm{~Hz}$, 3 H), 1.49 (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.23(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}\right): \delta=154.4,134.1,132.9$, 131.3, 113.4, 83.3, 35.7, 28.9, 27.2, 24.9, 19.8; IR (film): $\widetilde{v}=2983,2930,1650,1472,1331,1130$, 1109, $851 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 262 ($28, M^{+}$), 247 (16), 233 (6), 220 (3), 205 (14), 194 (5), 162 (33), 147 (22), 134 (93), 119 (30), 94 (63), 84 (84), 79 (100); HRMS (ESI): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{BO}_{2}\left[M^{+}+\mathrm{Na}\right.$]: 285.19963, found: 287.19984.

Building Blocks for the Preparation of Analogue 90 Devoid of the Trisubstituted Alkene at C13-C14

 (Scheme 12)(S)-1-(Trimethylsilyl)non-8-en-1-yn-3-ol (S-12): A Schlenk tube was charged with ketone 82 (0.66 g ,
 $3.17 \mathrm{mmol})^{8}$ and degassed iso-propanol (10 mL). The resulting solution was purged with Ar for 0.5 h before the ruthenium complex 91 was added as a solid $(0.114 \mathrm{~g}, 0.19 \mathrm{mmol})$. The resulting mixture was stirred for 12 h and evaporated, and the residue purified by flash chromatography (pentanes/ $\mathrm{Et}_{2} \mathrm{O}, 100: 1 \rightarrow 20: 1$) to give alcohol $\mathbf{S - 1 2}$ as a colorless oil ($648 \mathrm{mg}, 97 \%, e e=98 \%$ determined by chiral GC). $[\alpha]_{D}^{20}=+2(c=1.0$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}$): $\delta=5.88-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{bs}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=138.7,114.4,106.9,89.3,62.8,37.5,33.6,28.4,24.6,-0.2 ; \mathrm{IR}($ film $): \tilde{v}=$ 3337, 2989, 2870, 1641, 1392, 1250, 1142, $839 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 210 (0.2), 195 (7), 177 (6), 167 (6), 153 (6), 127 (43), 118 (9), 105 (11), 99 (54), 92 (14), 75 (100); HRMS (ESI): m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OSi}$ $\left[M^{+}+N a\right]:$ 233.13308, found: 233.13321.
(S)-(3-Methoxynon-8-en-1-ynyl)trimethylsilane (83): nBuLi (1.6 M in hexane, $1.9 \mathrm{~mL}, 3.08 \mathrm{mmol}$) was
 added dropwise to a solution of alcohol $\mathbf{S - 1 2}(648 \mathrm{mg}, 3.08 \mathrm{mmol})$ in THF (11 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before $\mathrm{Mel}(1.5 \mathrm{~mL}, 24.6 \mathrm{mmol})$ was introduced. The temperature was then raised to $-25^{\circ} \mathrm{C}$ before DMSO (0.75 mL) was slowly added to give a white suspension. After stirring for 1 h at that temperature, the cooling bath was removed and stirring continued at room temperature for 12 h . The reaction was quenched with ice water and aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(1: 1,10 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, the combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give product $\mathbf{S}-\mathbf{1 3}$ as a colorless oil (690 mg , quant.). $[\alpha]_{D}^{20}=-32.4\left(c=1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=5.81-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.80(\mathrm{~m}, 2 \mathrm{H})$,

[^7]$3.81(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.08(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=139.4,114.5,105.3,90.6,71.9,56.4,35.7,34.0,29.0,25.1,0.0$; IR (film): $\tilde{v}=2930,1641,1464,1333,1250,1105,840 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 224\left(M^{+}, 0.6\right), 209$ (8), 195 (2), 181 (5), 167 (3), 141 (100), 113 (32), 89 (16), 73 (18); HRMS (ESI): m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}\left[M^{+}\right.$ +Na]: 247.14886, found: 247.14870 .
(S)-7-Methoxynon-1-en-8-yne (S-13): A solution of TBAF (1 M in THF, $1 \mathrm{~mL}, 1 \mathrm{mmol}$) was slowly added to a solution of alkene $\mathbf{S}-13(187 \mathrm{mg}, 0.83 \mathrm{mmol})$ in $\mathrm{THF}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combinated organic phases were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give a crude pale yellow oil, which was purified by flash chromatography (hexanes/Et ${ }_{2} \mathrm{O}, 2: 1 \rightarrow 1: 1$) to give compound 83 as a colorless oil ($110 \mathrm{mg}, 87 \%$). $[\alpha]_{D}^{20}=-24.9$ ($c=$ $0.48, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (film): $\tilde{v}=2928,2859,1641,1464,1336,1104 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=$ $5.81-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.80(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{td}, J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-2.20(\mathrm{M}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=139.3$, 114.5, 83.2, 73.8, 71.3, 56.5, 35.8, 34.0, 29.0, 25.0; MS (EI): $m / z(\%): 152$ ($M^{+}, 0.04$), 137 (1), 105 (8), 91 (14), 84 (4), 79, (14), 69 (100); HRMS (CI, i-butane) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}^{+}+\mathrm{H}\right]$: 153.12794, found: 153.12794. Attempts at selective hydroboration of this product at the alkyne site with pinacol borane under a variety of conditions led to hardly tractable product mixtures, cf. Text.
(S)-6-Methoxy-8-(trimethylsilyl)oct-7-yn-1-ol (S-14): To a solution of alkene 83 ($640 \mathrm{mg}, 2.85 \mathrm{mmol}$) in 1,4-dioxane/water ($19 / 5 \mathrm{~mL}$) were sequentially added 2,6 -lutidine ($0.65 \mathrm{~mL}, 5.71 \mathrm{mmol}$), OsO_{4} ($0.715 \mathrm{~mL}, 0.057 \mathrm{mmol}, 2.5 \% \mathrm{w} / \mathrm{w}$ in $t \mathrm{BuOH}$) and $\mathrm{NaIO}_{4}(2.44 \mathrm{~g}, 11.42 \mathrm{mmol})$. The resulting heterogeneous mixture was vigorously stirred for 1.5 h before it was diluted with water. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, the combined organic layers were washed with $\mathrm{HCl}(1 \mathrm{M}, 2 \times 10 \mathrm{~mL})$, aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \% \mathrm{w} / \mathrm{w}, 10 \mathrm{~mL})$ and brine (10 mL), dried over MgSO_{4}, and carefully evaporated to give a pink oil (914 mg).

This crude aldehyde was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and treated with $\mathrm{NaBH}_{4}(130 \mathrm{mg}, 3.42 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 30 min , the mixture was diluted with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with tert-butyl methyl ether (3 $\times 5 \mathrm{~mL}$). The combined extracts were washed with brine (10 mL), dried over MgSO_{4}, and carefully evaporated, and the residue was purified by flash chromatography (hexanes $/ E t_{2} O, 1: 1$) to give alcohol S-14 as a colorless oil ($453 \mathrm{mg}, 70 \%$ over both steps). $[\alpha]_{D}^{20}=-24.2\left(c=1.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=3.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.30(\mathrm{~m}, 8 \mathrm{H})$, $0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=105.2,90.6,71.9,63.0,56.4,35.8,33.1,25.9,25.4,0.0$; MS (EI): m/z (\%): 228 ($M^{+}, 0.06$), 213 (4), 141 (100), 113 (31), 83 (10), 73 (15); IR (film): $\tilde{v}=3355$, 2936, 2862, 2168, 1464, 1333, 1249, 1087, 1006, 838, $759 \mathrm{~cm}^{-1}$; HRMS (Cl, i-butane) calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}: 229.16238$, found: 229.16211 .
(S)-6-Methoxyoct-7-yn-1-ol (84): A solution of TBAF (1 M in THF, $1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$) was added $\underbrace{\text { OMe }}$ dropwise to a solution of alcohol $\mathrm{S}-14$ ($427 \mathrm{mg}, 1.87 \mathrm{mmol}$) in $\mathrm{THF}(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ before the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, the combinated extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated, and the residue was purified by flash chromatography (hexanes/ $\mathrm{Et}_{2} \mathrm{O}, 2: 1 \rightarrow 1: 1$) to give compound 84 as a colorless oil (247 mg, 85\%). $[\alpha]_{D}^{20}=-32.1\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=3.93(\mathrm{dt}, J=6.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.58(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.30(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 100 MHz): $\delta=83.2,73.8,71.3,62.9,56.5,35.8,33.1,25.8,25.3$; IR (film): $\tilde{v}=3291,2935,2862$, 1463, 1335, 1081, 1055, $998 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 156$ ($M^{+}, 0.01$), 125 (1), 111 (2), 97 (5), 84 (25), 69 (100); HRMS (CI, i-butane) calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}\left[M^{+}+\mathrm{Na}\right]: 157.12286$, found: 157.12300.
(S,E)-6-Methoxy-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oct-7-enal (S-15): Pinacol borane
 ($0.5 \mathrm{~mL}, 3.16 \mathrm{mmol}$) and 9-BBN ($38 \mathrm{mg}, 0.158 \mathrm{mmol}$) were added to a solution of alkyne $84(247 \mathrm{mg}, 1.58 \mathrm{mmol})$ in THF (3 mL), and the resulting mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 3 \mathrm{~mL}$), the combined extracts were dried over MgSO_{4}, filtered and evaporated, and the residue was purified by flash chromatography (pentane/Et $2 \mathrm{O}, 1: 1$) to give alcohol 85 contaminated with boron impurities.

Dess-Martin periodinane ($1 \mathrm{~g}, 2.45 \mathrm{mmol}$) was added to a solution of this compound (464 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h at room temperature before the reaction was quenched with a mixture of sat. aq. NaHCO_{3}, sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ (1:1:1, 10 mL$)$. The resulting mixture was vigorously stirred for 30 min , the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), the combined organic layers were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/acetone, $15: 1 \rightarrow 10: 1$) to give aldehyde S-15 as a colorless oil ($273 \mathrm{mg}, 61 \%$ over 2 steps). $[\alpha]_{D}^{20}=-51.5\left(c=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ MHz): $\delta=9.70(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=18.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=18.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (qd, J = 6.7, 1.0 Hz, 1H), 3.22 (s, 3H), 2.38 (dt, J = 7.3, 1.8 Hz, 2H), 1.65-1.26 (m, 6H), 1.23 (s, 12H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}$): $\delta=202.8,153.3,83.7,83.6,56.7,44.2,35.1,25.2,25.0,25.0,22.4 ;$ IR (film): $\tilde{v}=2979,2935,2822,1724,1640,1462,1390,1361,1322,1271,1214,1143,1107 ; 1087 ; 1000 ;$ 969; $848 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 282 ($M^{+}, 0.3$), 267 (0.8), 197 (100), 182 (3), 167 (3), 141 (7), 138 (9); HRMS (ESI): m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~B}\left[M^{+}+\mathrm{Na}\right]$: 305.18946, found: 305.18956.
(S,E)-2-(3-Methoxynona-1,8-dienyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (86): Prepared as
 described for compound 83; colorless oil (90 mg, 67\%). $[\alpha]_{D}^{20}=-15.5$ ($c=$ 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=6.35(\mathrm{dd}, J=18.1,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.87-5.75 (m, 1H), 5.53 (dd, J=18.1, 1.0 Hz, 1H), 5.30-4.89 (m, 2H), 3.55 (dt, J=6.7, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.29(\mathrm{~m}$, $6 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}$): $\delta=153.6,139.5,114.3,83.9,83.5,56.7,35.2,34.1$, 29.3, 25.2; IR (film): $\tilde{v}=2978,2932,2859,1641,1464,1362,1333,1145,1105,998,970,849 \mathrm{~cm}^{-1}$;

MS (EI): $m / z(\%): 280\left(M^{+}, 2\right), 265(5), 197(100), 180(2), 165$ (3), 141 (5), 112 (7); HRMS (ESI): m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~B}\left[M^{+}+\mathrm{Na}\right]$: 303.21019, found: 303.21042.

Stille Coupling Reactions

Compound 19: A Schlenk tube was charged with stannane 18 ($222 \mathrm{mg}, 0.486 \mathrm{mmol}$), ${ }^{3}$ alkenyl iodide 17 ($200 \mathrm{mg}, 0.442 \mathrm{mmol}$), $\left[\mathrm{Ph}_{2} \mathrm{PO}_{2}\right][\mathrm{NBu} 4](244 \mathrm{mg}, 0.53$
 mmol) and DMF (0.9 mL). The resulting homogeneous mixture was vigorously stirred and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.017$ mmol) and copper thiophene-2-carboxylate (CuTC, 101 mg , 0.53 mmol) were added. The mixture instantaneously turned dark and after 10 min the reaction was quenched at $0^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The resulting suspension was filtered through a pad of Celite, which was carefully washed with EtOAc (50 mL). The aqueous phase was extracted with EtOAc (2×2 $\mathrm{mL})$, the combined organic layers were washed with water $(3 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ before they were dried over MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $8: 1 \rightarrow 4: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$), furnishing compound 19 as a colorless oil (163 mg , $75 \%) .[\alpha]_{D}^{20}=+28.5\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.67(\mathrm{~m}$, $2 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=16.8,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, \mathrm{J}=11.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.09(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=$ $14.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, \mathrm{J}=14.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.30$ $(\mathrm{m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=168.2,138.2,136.4,134.0$, 133.7, 132.7, 132.7, 132.4, 132.0, 131.1, 130.4, 123.3, 123.1, 113.3, 81.8, 81.2, 56.1, 45.3, 41.1, 35.5, 23.2, 19.7, 17.0, 15.1, 11.8; IR (film): $\tilde{v}=3469,2927,1771,1709,1388,1424,1387,1330,1088,990$, 939, 906, 725, $712 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{NO}_{4}\left[M^{+}+\mathrm{Na}\right]: 512.27687$, found: 512.27713.

Compound S-16b: Prepared analogously as a colorless oil ($286 \mathrm{mg}, 88 \%$). $[\alpha]_{D}^{20}=+2.5\left(c=0.1, \mathrm{CHCl}_{3}\right)$;

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=7.72(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{dd}, \mathrm{J}=$ $17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (brt, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ (brd, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.08(\mathrm{~m}, 4 \mathrm{H}), 5.75(\mathrm{dd}, J=14.6,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=14.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.46(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=15.5$, 5.7 $\mathrm{Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.46(\mathrm{td}, \mathrm{J}=7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.23(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~s}$, $3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}$): $\delta=171.9,160.8,138.7,137.0,134.2,133.1,132.9,131.0,130.9,128.3,122.8$, 121.5, 113.5, 82.0, 81.5, 56.1, 47.7, 47.0, 41.2, 36.3, 23.7, 20.0, 18.6, 17.2, 14.9, 12.1; IR (film): $\widetilde{v}=$ 3300, 2972, 2927, 2870, 1652, 1533, 1446, 1380, 1239, 1097, $991 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]: 481.30368$, found: 481.30400.

Compound S-16a: Prepared analogously as a colorless oil ($20 \mathrm{mg}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$):
 $\delta=8.20(\mathrm{~s}, 1 \mathrm{H}), 6.77$ (ddd, $J=17.3,10.8,0.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.48(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.12(\mathrm{~m}, 4 \mathrm{H}), 5.64(\mathrm{dd}, \mathrm{J}=$ $12.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43$ (dd, $J=14.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=17.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}$, $J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}$, $J=7.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{bs}, 1 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}$): $\delta=168.7,161.9,138.6,137.0,134.5,134.1,133.1,133.0,132.8,131.3$, 131.0, 123.1, 121.8, 113.5, 82.1, 81.6, 56.3, 47.3, 42.1, 41.5, 36.0, 23.6, 19.9, 17.3, 15.1, 12.0; HRMS (ESI): m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]$: 467.28802, found: 467.28844.
Compound S-16c: Prepared analogously as a colorless oil ($39 \mathrm{mg}, 73 \%$). $[\alpha]_{D}^{20}=+9.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.12(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.18$ (m, 4H), 6.78 (ddd, J = 17.4, 10.8, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.45 (brd, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.03(\mathrm{~m}, 5 \mathrm{H}), 5.66-5.61(\mathrm{~m}, 1 \mathrm{H})$, $5.48-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=$ $17.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=15.3,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{dt}, \mathrm{J}=7.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=7.0,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.34$ $(\mathrm{m}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H})$, $\left.1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=170.6,161.1,138.6,137.0$, 136.9, 134.3, 134.2, 133.2, 133.0, 132.8, 131.4, 131.0, 129.7 (x 2), 129.0 (x 2), 127.4, 123.1, 122.0, 113.5, 82.1, $81.6,56.3,47.4,41.5,41.5,38.6,36.0,23.6,19.9,17.3,15.1,11.9 ; \operatorname{IR}(f i l m): \widetilde{v}=3300$, 2925, 2850, 1661, 1534, 1455, 1379, 1089, 993, $700 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{2}\left[M^{+}\right.$ +Na]: 557.33498, found: 557.33485.
Compound S-16d: Prepared analogously as a colorless oil ($38 \mathrm{mg}, 71 \%$). $[\alpha]_{D}^{20}=+6.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$;
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.17$ ($\mathrm{s}, 1 \mathrm{H}$), 6.78 (ddd, $J=17.3,10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{brd}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.45 (brs, 1H), 6.20-6.13 (m, 4H), 5.67-5.62 (m, 1H), $5.45-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=$ $17.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dt}, J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dt}, J=7.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.75(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=7.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~m}$, $3 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ 170.9, 161.3, 138.6, 137.0, 134.4, 134.2, 133.2, 133.0, 132.8, 131.4, 131.0, 123.1, 121.8, 113.5, 82.1, 81.6, 56.3, 51.3, 47.3, 41.5, 36.0, 32.1, 30.5, 23.6, 19.9, 17.3, 15.4, 15.2, 12.0; IR (film): $\tilde{v}=3275$, 2925, 2850, 1660, 1534, 1451, 1380, 1092, $993 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{~S}\left[M^{+}\right.$ +Na]: 541.30705, found: 541.30715.

Compound S-16e: Prepared analogously as a colorless oil ($378 \mathrm{mg}, 74 \%$). $[\alpha]_{D}^{20}=+39.1$ (c = 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.82-7.78$ $(\mathrm{m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H})$, 7.20 (d, J = 5.9 Hz, 1H), 6.74 (ddd, $J=17.4,10.8,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20-6.09(\mathrm{~m}, 4 \mathrm{H}), 5.60(\mathrm{dd}, \mathrm{J}=14.2,8.2$ $\mathrm{Hz}, 1 \mathrm{H}$) , 5.44 (dd, $J=14.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.33(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=9.7,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.00-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3,167.2,137.8,136.3,133.9,133.7,133.7,132.9,132.7$, $132.3,131.9,131.3,130.4,128.6,127.1,123.1,121.9,113.3,81.9,81.2,62.7,56.2,54.4,47.3,41.2$, $35.5,25.8,23.2,19.7,18.1,17.0,15.0,11.7,-5.4,-5.6$; IR (film): $\tilde{v}=3336,2931,2858,1648,1513$, 1483, 1362, 1264, 1102, 993, $837 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 687.41681$, found: 687.41637.

Compound S-17: Prepared analogously from iodide 37 ($30 \mathrm{mg}, 0.055 \mathrm{mmol}$) and stannane 18 (25.6
 $\mathrm{mg}, 0.061 \mathrm{mmol}$) as a colorless oil ($29 \mathrm{mg}, 92 \%$). $[\alpha]_{D}^{20}=+27.4\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ MHz): $\delta=8.22$ (s, 1 H), 6.77 (dd, $J=17.4,10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61$ (bs, 1H), 6.55 (bs, 1H), 6.43 (dd, $J=15.1$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.11(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.58(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.38$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=$ $9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{bs}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, 1.68-1.42 (m, 2H), 0.92-0.84 (m, 11H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=$ $169.6,161.2,139.2,136.7,134.1,133.2,133.0,132.7,131.4,131.0,129.0,128.5,126.6,113.4,81.6$, 81.5, 63.1, 56.3, 53.4, 41.8, 41.5, 36.0, 25.9, 23.6, 19.9, 18.4, 17.2, 12.0, -5.4, -5.5; IR (film): $\tilde{v}=$ 3287, 2929, 2857, 1652, 1543, 1465, 1379, 1257, 1104, 838, $780 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 597.36942, found: 597.36915.

Suzuki Coupling Reactions

Compound 79: $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(7.9 \mathrm{mg}, 0.0108 \mathrm{mmol})$ and $\mathrm{Ba}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}(34 \mathrm{mg}, 0.108 \mathrm{mmol})$ were added to a solution of alcohol $27\left(R^{1}=H, R^{2}=\mathrm{CH}_{2} \mathrm{OTBS}\right.$,
 $40 \mathrm{mg}, 0.072 \mathrm{mmol})$ and boronate 78 ($22.9 \mathrm{mg}, 0.087$ mmol) in DMF (0.25 mL). The mixture was vigorously stirred for 1 h before it was diluted with ice water (2 $\mathrm{mL})$. The aqueous phase was extracted with EtOAc $(3 \times 2 \mathrm{~mL})$, the combined organic layers were washed with brine (5 mL), dried over MgSO_{4} and evaporated to give a crude brown solid. Purification
by flash chromatography (hexanes/acetone, $3: 1$) furnished compound 79 as a colorless syrup (23.7 $\mathrm{mg}, 59 \%) .[\alpha]_{D}^{20}=+20.4\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.77$ (dd, J=1.0, $17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.50-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.99-6.15(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{td}, J=7.1,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=8.3$, $14.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{td} J=1.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dt}, J=$ $4.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=4.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}$, $3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=169.8,161.2,138.6,134.3,134.1,133.8,132.8,132.5,131.3,130.7$, 123.0, 122.2, 113.4, 82.1, 63.1, 53.4, 47.5, 41.6, 32.5, 29.8, 27.2, 26.0, 25.0, 19.9, 18.4, 17.4, 15.1, 11.9, -5.4, -5.5; IR (film): $\tilde{v}=3298,2928,2857,1651,1540,1463,1380,1257,1111,988,837 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 501 (9, $\left.M^{+}-t B u\right), 369$ (100), 351 (23), 341 (47), 311 (8), 237 (45), 230 (13), 209 (16), 202 (28), 189 (24), 174 (21), 171 (16), 140 (67), 123 (46), 109 (26), 95 (49), 84 (84), 79 (100); HRMS (ESI): m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 581.37451, found: 581.37422.

Compound S-18: Prepared analogously as a colorless oil ($40 \mathrm{mg}, 68 \%$). $[\alpha]_{D}^{20}=+27\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$);

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.21$ ($\mathrm{s}, 1 \mathrm{H}$), 6.78 (ddd, $J=17.3,10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (brs, 1H), 6.39 (brs, 1H), 6.19-6.08 (m, 2H), 5.64 (dd, $J=14.6,8.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.44 (dd, $J=14.6,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, \mathrm{J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.19 (dd, J = 17.4, 1.5 Hz, 1H), 5.07 (dt, J= $10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{td}, J=7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=9.8,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.60-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=170.1,161.5,136.8,134.5,133.4,133.3$, $133.3,131.5,131.4,113.8,82.0,75.6,63.6,56.6,53.8,43.9,40.2,36.4,35.1,30.3,27.6,26.3,26.1$, 24.0, 20.2, 18.8, 17.2, -5.0, -5.1; IR (film): $\tilde{v}=3297,2929,2857,1648,1543,1463,1379,1252$, 1100, 989, 939, 900, $835,777 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 587.3852$, found: 587.3851.

Compound S-19: Prepared analogously as a colorless oil (31.9 mg, 95\%). $[\alpha]_{D}^{20}=-13.0$ (c = 1.0,
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$): $\delta=8.16$ (s, 1H), $7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 3 \mathrm{H})$, 6.78 (dd, $J=10.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{brd}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37$ (brt, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.14(\mathrm{~m}, 2 \mathrm{H})$, $5.73-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.42-$ $5.36(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dd}, J=9.9$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.47(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.17$ $(\mathrm{m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.45(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 12 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right): \delta=169.6,161.3,143.7,139.2,136.7,134.2,133.2,133.0,132.8,131.5,131.0$, $128.7,128.2,127.7,125.6,113.5,81.6,78.5,63.0,56.3,53.5,45.4,41.2,36.0,25.9,23.6,19.9,18.4$,
17.1, -5.4, -5.5; IR (film): $\tilde{v}=3298,2919,2857,1651,1536,1463,1381,1255,1102,990,837,779$, $708 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 621.36942$, found: 621.36898.

Compound 87: Prepared analogously as a colorless oil ($27.4 \mathrm{mg}, 65 \%$). $[\alpha]_{D}^{20}=+5.2\left(c=0.75, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.65-6.59$ $(\mathrm{m}, 2 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 3 \mathrm{H}), 5.88-5.75(\mathrm{~m}, 1 \mathrm{H})$, 5.68-5.59 (m, 1H), 5.49-5.41 (m, 1H), 4.99 (ddd, J = $17.1,3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dt}, J=10.2,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.46-4.40 (m, 1H), $4.05(\mathrm{dd}, J=9.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}$, $J=9.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.29(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=163.8,161.2,139.5,138.5,136.8,134.5,133.6,132.5,131.5,123.1$, 122.2, 114.3, 82.4, 82.1, 63.1, 56.2, 53.4, 47.5, 41.5, 35.9, 34.1, 29.3, 25.9, 25.2, 18.4, 17.3, 15.1, 11.9, -5.4, -5.5; IR (film): $\tilde{v}=3291,2927,2852,1653,1538,1461,1382,1255,1108,987,839 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 599.38507, found: 599.38640.

Esterification Reactions

Compound 21: EDC $\cdot \mathrm{HCl}(113 \mathrm{mg}, 0.59 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ to a solution of acid $20(112 \mathrm{mg}$,
 $0.425 \mathrm{mmol})^{3}$ and 4-pyrrolidinylpyridine (10 mg , 0.065 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The cooling bath was removed and the homogeneous solution stirred at room temperature for 10 min . The full consumption of $\mathbf{2 0}$ was checked by TLC (hexanes/EtOAc, $4: 1$) and the formation of a less polar spot corresponding to the activated acid derivative was observed (if necessary, more EDC.HCl was added to obtain a full conversion). At this stage, a solution of alcohol 19 ($160 \mathrm{mg}, 0.327 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) was added before the solvent was removed by passing a gentle stream of argon over the mixture. The resulting viscous residue was slowly stirred for 18 h before the mixture was taken up in the minimum amount of CHCl_{3} and purified by flash chromatography (hexanes/EtOAc, 8:1 $\rightarrow 4: 1$) to give ester 21 as a white solid ($177 \mathrm{mg}, 75 \%$). $[\alpha]_{D}^{20}=+12.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.87-7.82(\mathrm{~m}, 2 \mathrm{H})$, $7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{dd}, J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=9.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 2 \mathrm{H})$, 6.14-6.04 (m, 3H), 5.84-5.72 (m, 1H), 5.64-5.54 (m, 2H), 5.44-5.34 (m, 2H), 5.25 (d, J=8.9 Hz, 1H), $5.18(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.10-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.30-3.21(m, 1H), $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.83$ $(\mathrm{d}, \mathrm{J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.13$ (d, J = 6.7 Hz, 3H), $0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=168.4,167.4,145.1,136.8$, $136.2,135.3,135.2,134.4,134.1,133.7,133.5,133.1,133.0,132.7,132.5,132.0,131.9,131.0,130.7$, $127.2,124.2,123.5,122.6,116.8,113.4,82.9,81.6,77.1,56.1,56.0,45.5,40.4,39.9,36.7,36.0,23.6$, 20.5, 19.9, 17.0, 15.3, 13.2, 12.9, 12.6; IR (film): $\tilde{v}=2972,2929,1772,1717,1388,1330,1099,990$
cm^{-1}; MS (EI): $m / z(\%): 735$ (1, $\left.M^{+}\right), 694$ (2), 516 (11), 440 (4), 281 (10), 247 (29), 215 (55), 137 (100), 107 (67); HRMS (ESI): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{61} \mathrm{NO}_{6}\left[M^{+}+\mathrm{Na}\right.$]: 758.43884, found: 758.43910.

Compound 28b: Prepared analogously as a white solid (311 mg, 71\%). $[\alpha]_{D}^{20}=+14.0\left(c=1.0, \mathrm{CHCl}_{3}\right.$);

 ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}$): $\delta=7.65(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~m}$, $2 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.06(\mathrm{~m}, 4 \mathrm{H})$, 5.94 (ddt, $J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.78-5.63$ (m, $3 \mathrm{H}), 5.54-5.45(\mathrm{~m}, 3 \mathrm{H}), 5.37-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}$, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 3 \mathrm{H}), 4.40-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=8.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.66(\mathrm{~m}$, $2 \mathrm{H}), 3.49(\mathrm{td}, \mathrm{J}=7.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 1 \mathrm{H})$, $2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=1.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right): \delta=160.3,144.9,136.0,135.6,135.0,134.2,134.0,133.1,132.9$, $131.4,131.0,131.0,130.9,127.4,116.9,113.5,81.4,77.2,56.0,55.9,47.6,47.6,40.6,40.0,35.2$, 23.7, 20.5, 20.0, 18.5, 17.1, 14.9, 13.1, 12.8, 12.8, 12.6; IR (film): $\tilde{v}=3296,2972,2931,1660,1532$, 1451, 1378, 1231, 1098, 991, $968 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{43} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]$: 727.46566, found: 727.46508.

Compound 28a: Prepared analogously as a colorless oil (16 mg, 61\%). $[\alpha]_{D}^{20}=+20.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$);

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.76$ (dd, $J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57 (dd, $J=9.8,1.6 \mathrm{~Hz}$, 1H), 6.51 (brs, 1H), 6.25-6.05 (m, 6H), 5.77 (ddt, J = $17.2,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.59 (dd, $J=15.5,7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.43-5.36(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.95(\mathrm{~m}, 4 \mathrm{H}), 4.04$ (td, $J=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.21(\mathrm{~m}$, $1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.43(\mathrm{~m}$, $2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75 \mathrm{MHz}\right): \delta=168.4,167.5$, $161.6,145.2,136.8,136.2,135.3,135.1,135.0,134.1,133.7,133.1,133.0,132.7,131.9,131.9,131.0$, $130.7,127.2,124.1,121.5,116.8,113.5,83.0,81.6,77.2,56.1,56.0,47.3,42.1,40.4,39.9,36.6,36.0$, 23.6, 20.5, 19.9, 17.0, 15.2, 13.2, 12.8, 12.6; IR (film): $\tilde{v}=3316,2962,2928,1694,1663,1542,1448$, 1383, 1260, 1097, 1016, $988,800 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{6} \mathrm{~N}_{2}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 713.45001, found: 713.45081.

Compound 28c: Prepared analogously as a colorless oil (42 mg, 75\%). $[\alpha]_{D}^{20}=+34.5$ (c = 1.0, CHCl_{3});

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=8.13(\mathrm{~s}, 1 \mathrm{H})$, $7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.77$ (dd, $J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{dd}, J=9.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{brd}, J=4.8 \mathrm{~Hz}$, 1H), 6.22-6.04 (m, 5H), 5.87 (brm, 1H), 5.77 (ddt, $J=17.2,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=15.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{td}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}$,
$J=15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=15.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, 3.19-3.17 (brs, 3 H), $3.08(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.65-2.55 (m, 1H), 2.37-2.30 (m, 1H), 2.23-2.16 (m, 3H), $1.83(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, $1.51-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=$ $170.4,167.5,161.0,145.1,136.9,136.8,136.2,135.2,135.2,135.0,134.1,133.7,133.1,133.0,132.7$, 132.0, 131.9, 131.0, 130.7, 129.7, 129.0, 127.4, 127.2, 124.2, 121.7, 116.8, 113.4, 83.0, 81.6, 77.2, 56.2, 56.0, 53.7, 47.4, 40.4, 39.9, 38.6, 36.6, 36.0, 23.6, 20.5, 19.9, 17.0, 15.2, 13.2, 12.8, 12.6; IR (film): $\tilde{v}=3291,2925,2855,1651,1496,1443,1380,1261,1238,1095,990,966,801,736,699$ cm^{-1}; HRMS (ESI): m / z : calcd for $\mathrm{C}_{49} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]: 803.49696$, found: 803.49703.
Compound 28d: Prepared analogously as a colorless oil ($46 \mathrm{mg}, 82 \%$). $[\alpha]_{D}^{20}=+29.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$;
 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=8.18(\mathrm{~s}, 1 \mathrm{H}), 6.77$ (ddd, $J=17.3,10.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57 (dd, $J=9.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{brm}, 1 \mathrm{H}), 6.28-6.22(\mathrm{~m}, 2 \mathrm{H})$, 6.19-6.06 (m, 4H), 5.78 (ddt, $J=17.1,10.2,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59$ (dd, $J=15.5,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.42-5.35(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=17.4,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09-4.96(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{td}, J=7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{td}, \mathrm{J}=9.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, \mathrm{~J}=5.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.52-3.47 (m, 1H), 3.29-3.22 (m, 1H), 3.20 (s, 3H), 3.20-3.17 (brs, 3H), 2.65-2.48 (m, 3H), 2.38-2.31 (m, 1H), 2.24-2.14 (m, 4H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 1 \mathrm{H})$, $1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=170.7,167.5,161.1$, $145.1,136.8,136.2,135.2,135.2,135.0,134.1,133.7,133.1,133.0,132.9,132.0,131.9,131.0,130.7$, $127.2,124.2,121.5,116.8,113.4,83.0,81.6,77.2,56.1,56.0,51.3,47.3,40.4,39.9,36.6,36.0,32.0$, 30.5, 23.6, 20.5, 19.9, 17.0, 15.4, 15.2, 13.2, 12.8, 12.6; IR (film): $\tilde{v}=3275,2967,2925,1706,1655$, 1539, 1448, 1378, 1216, 1097, 988, $966 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{45} \mathrm{H}_{68} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{~S}\left[M^{+}+\mathrm{Na}\right]$: 787.46903, found: 787.46891.

Compound 28e: Prepared analogously as a colorless oil ($419 \mathrm{mg}, 79 \%$). $[\alpha]_{D}^{20}=+35.7\left(c=0.4, \mathrm{CHCl}_{3}\right)$;

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82-7.78(\mathrm{~m}$, $2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H})$, 7.19 (d, J = $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.54$ (dd, $J=9.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.18(\mathrm{~m}, 1 \mathrm{H})$, 6.15-6.00 (m, 4H), 5.84-5.69 (m, 1H), $5.59-5.45(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.29(\mathrm{~m}, 3 \mathrm{H}), 5.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.90(\mathrm{~m}$, $4 \mathrm{H}), 4.58-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, \mathrm{J}=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.43$ $(\mathrm{m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.10$ $(\mathrm{m}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.68-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2,167.2,144.9,136.4,135.9,134.6$, $134.4,133.7,133.7,133.4,132.9,132.7,132.3,132.1,131.9,131.5,131.4,130.4,130.2,128.6,127.1$, $126.7,124.3,121.8,116.9,113.3,82.7,81.3,76.9,62.7,56.0,54.4,47.3,40.0,39.6,36.3,35.6,25.8$,
$23.2,20.3,19.7,18.0,16.8,15.1,13.1,12.6,12.5,-5.4,-5.6$ IR (film): $\tilde{v}=2927,2857,1710,1638$, 1535, 1450, 1254, 1099, 989, 836, $778 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{55} \mathrm{H}_{82} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]:$ 933.57844, found: 933.57835.

Compound 38: Prepared analogously from 53 as a colorless oil (34 mg, 83\%). $[\alpha]_{D}^{20}=+34.4$ ($c=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.53(\mathrm{~m}$, 2H), 6.49 (bs, 1H), 6.40 (dd, $J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $6.15-6.00(\mathrm{~m}, 3 \mathrm{H}), 5.85-5.53(\mathrm{~m}, 4 \mathrm{H}), 5.43-5.33$
 (m, 2H), 5.25 ($\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 ($\mathrm{d}, J=17.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10-4.98(\mathrm{~m}, 3 \mathrm{H}), 4.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 2 \mathrm{H})$, $3.99-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=9.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.48 ($q, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.22-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.60($ sext., J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38-2.29 (m, 1H), 2.12-2.26 (m, 3H), $1.82(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, 0.10 (s, 3H), $0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=169.6,167.4,161.1,145.2,136.8,136.1$, $135.6,135.1,134.1,133.7,133.1,133.0,132.8,132.0,131.9,131.0,130.7,129.8,128.2,127.9,127.1$, $116.8,113.4,82.7,81.6,77.1,63.1,56.1,56.0,53.4,41.7,40.4,39.8,36.7,36.0,25.9,23.6,20.5$, 19.9, 18.4, 16.9, 13.2, 12.8, 12.6, -5.4, -5.5; IR (film): $\tilde{v}=3296,2927,1709,1696,1656,1539,1458$, 1385, 1256, 1101, $963,839 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 843.53202$, found: 843.53140 .

Compound 50: Prepared analogously as a colorless oil using DCC as the coupling agent ($33 \mathrm{mg}, 74 \%$).

$[\alpha]_{D}^{20}=-2.0\left(c=0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) : $\delta=8.21(\mathrm{~s}, 1 \mathrm{H}), 6.77$ (dd, $J=17.2,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.57$ (d, J = 9.8, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (brs, 1H), 6.40 (brs, 1H), 6.18-6.05 (m, 3H), 5.78 (ddt, $J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=14.2,8.0$
$\mathrm{Hz}, 1 \mathrm{H}$), 5.61 (dd, $J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.45-5.36(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (dd, J=17.3, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{dt}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{td}, J=7.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}$, $2 \mathrm{H}), 3.60(\mathrm{dd}, J=9.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.45$ $(\mathrm{m}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.7,168.3,161.1,145.0,136.9,135.6$, $135.2,134.2,133.8,133.0,133.0,132.8,132.0,131.9,131.0,130.9,127.3,116.8,113.5,81.6,77.2$, $63.3,56.2,56.1,53.4,41.2,40.4,39.8,36.8,36.0,34.3,31.9,29.8,27.0,26.0,25.6,23.6,20.6,20.6$, 19.9, 18.4, 16.7, 13.2, 12.8, -5.4, -5.5; IR (film): $\tilde{v}=3300,2928,2285,1706,1650,1539,1463,1379$, 1257, 1098, 990, 965, 911, 837, 814, $778 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{47} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 833.5474, found: 833.5470.

Compound 58: Prepared analogously as a colorless oil using DCC as the coupling agent (23.6 mg , $52 \%) .[\alpha]_{D}^{20}=-4.5\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.15(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$,

$7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.76$ (dd, $J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{brd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.60 (dd, $J=9.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{brt}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17-6.06(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{ddt}, J=17.2,10.2$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.49-5.34(\mathrm{~m}$,
$3 \mathrm{H}), 5.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 3 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.08-$ $4.00(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{td}, J=7.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.17$ $(\mathrm{s}, 3 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 12 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.7,167.7$, $161.3,145.7,140.3,139.2,136.8,135.8,135.2,134.1,133.8,133.0,132.9,132.0,131.8,131.1,131.0$, $129.0,128.6,127.0,125.3,116.8,113.5,81.6,80.0,77.2,63.2,56.2,56.0,54.2,53.4,43.1,41.0,40.4$, $36.7,36.1,36.0,26.0,25.9,23.6,20.5,19.9,18.5,16.9,13.2,12.7,-5.3,-5.4$; IR (film): $\tilde{v}=2931$, 2855, 1711, 1652, 1375, 1256, 1216, 1102, 991, $837 \mathrm{~cm}^{-1}$; MS (ESI): m/z: calcd for $\mathrm{C}_{50} \mathrm{H}_{76} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Si}\left[\mathrm{M}^{+}\right.$ +Na]: 867, found: 867.

Compound 67: Prepared analogously from acid $65(19 \mathrm{mg}, 0.085 \mathrm{mmol})$ and alcohol $66(50 \mathrm{mg}$, $0.085 \mathrm{mmol})^{3}$ as a colorless oil ($36 \mathrm{mg}, 54 \%$). $[\alpha]_{D}^{20}=+25.9\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.17-6.03 (m, 4H), 5.78 (m, 1H), 5.68-5.53 (m, 2H), 5.45-5.35 (m, 2H), 5.25-5.15 (m, 2H), 5.10-4.98
 $(\mathrm{m}, 4 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.80(\mathrm{~m}$, $2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.30$ $(\mathrm{m}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 5 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.49$ $(\mathrm{m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=$ $172.7,169.8,161.2,137.0,136.4,135.5,135.4,135.3,134.8,134.2,133.0$ ($2 x$), 132.9, 131.1, 131.0, $130.7,129.0,124.6,121.8,116.7,113.5,82.8,81.6,77.2,63.1,56.2,56.0,53.7,47.5,40.5,39.9,36.1$, $34.4,32.6,25.9,25.3,23.6,19.9,18.4,17.1,15.2,13.3,12.7,-5.4,-5.5$; IR (film): $\tilde{v}=3301,2928$, 2857, 1733, 1651, 1538, 1463, 1380, 1257, 1099, 990, 965, 837, $779 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 831.53140$, found: 831.53110.

Compound 73: Prepared analogously as a colorless oil using DCC as the coupling agent ($10 \mathrm{mg}, 89 \%$).

 $[\alpha]_{D}^{20}=+4\left(c=0.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.56-$ $6.46(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.04$ $(\mathrm{m}, 3 \mathrm{H}), 5.84-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 5.43-$ 5.33 (m, 2H), 5.18 (dd, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-$ $4.96(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=9.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=$ $14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 5 \mathrm{H}), 2.06(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$,
$1.60-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.8,167.3,161.2,142.3,139.5,136.3,135.5,135.3,135.0,134.1,133.1,133.0,132.7$, 131.0, 130.6, 128.4, 126.4, 124.2, 121.9, 116.5, 113.4, 82.9, 81.6, 77.2, 63.1, 56.1, 55.7, 53.4, 47.4, 40.5, 39.9, 39.6, 36.1, 28.4, 27.2, 25.9, 23.6, 19.9, 18.4, 17.0, 16.7, 15.2, 12.8, 12.5, -5.4, -5.5; IR (film): $\tilde{v}=3310,2928,2858,1651,1536,1463,1384,1254,1101,990,910,837,779 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 845.54705$, found: 845.54630.

Compound 80: Prepared analogously as a colorless oil ($27 \mathrm{mg}, 86 \%$). $[\alpha]_{D}^{20}=+21.7\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$).

 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.76$ (dd, $J=17.3,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.47(\mathrm{~m}, 3 \mathrm{H})$, 6.22 ($d, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.11-5.95 (m, 3H), 5.85-5.72 (m, 1H), 5.64-5.54 $(\mathrm{m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=14.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.45-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, \mathrm{J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.58$ (quint., $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{q}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.06(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.74(\mathrm{~s}, 6 \mathrm{H}), 1.44$ (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.1(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=169.8,167.5,161.2,145.1,136.8,135.1$, $134.1,133.7,133.5,133.2,132.8,131.9,131.9,131.5,131.3,130.9,127.2,124.1,121.9,116.8,113.4$, 83.1, 77.1, 63.1, 56.0, 53.4, 47.4, 40.4, 39.8, 36.6, 32.5, 29.9, 27.2, 25.9, 20.5, 19.9, 17.2, 15.2, 13.2, 12.6, -5.4, -5.5; IR (film): $\tilde{v}=2927,1651,1551,1450,1385,1259,1104,987,839 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 827.53649, found: 827.53682.

Compound 88: Prepared analogously as a colorless oil ($22.7 \mathrm{mg}, 58 \%$). $[\alpha]_{D}^{20}=+22.7\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$);
 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right): \delta=8.23(\mathrm{~s}, 1 \mathrm{H})$, $6.60-6.45(\mathrm{~m}, 3 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.18-6.03 (m, 4H), 5.90-5.70 (m, 2H), 5.64-5.54 $(\mathrm{m}, 2 \mathrm{H}), 5.44-5.34(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10-4.88(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{td}, J=6.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{dd}$, $J=9.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.20$ (quint., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H})$, $1.57-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right): \delta=169.8,167.4,161.1,145.1,139.5,136.8,136.1,135.3,135.2$, $135.0,133.7,133.1,132.8,132.0,131.9,130.7,127.2,124.3,121.8,116.8,114.3,83.0,82.4,77.1$, 63.1, 56.1, 56.0, 47.4, 40.4, 39.9, 36.7, 35.9, 34.1, 29.3, 25.9, 25.2, 20.5, 18.4, 17.0, 15.2, 13.2, 12.8, 12.6, -5.4, -5.5; IR (film): $\tilde{v}=2931,2853,1651,1535,1466,1387,1256,1102,991,840 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 845.54705$, found: 845.54683 .

Ring Closing Alkene Metathesis Reactions

Macrocycle 23. Complex 22 ($12.9 \mathrm{mg}, 0.0152 \mathrm{mmol}, 10 \mathrm{~mol} \%$) was added to a solution of ester 21
 $(110 \mathrm{mg}, 0.152 \mathrm{mmol})$ in toluene (152 mL). The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h before the reaction was quenched with ethyl vinyl ether (ca $1 \mathrm{~g})$. After stirring for 30 min at room temperature, the mixture was concentrated and the residue purified by flash chromatography (hexanes/EtOAc, $10: 1 \rightarrow 5: 1$, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give macrocycle 23 as a white solid ($86 \mathrm{mg}, 77 \%$). $[\alpha]_{D}^{20}=-12.5$ $\left(c=0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=$ $10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=11.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (dd, J = 14.5, 10.4 Hz, 1H), 5.96 (dd, $J=14.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.33(\mathrm{~m}, 4 \mathrm{H})$, $5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{dt}, J=9.6,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.47(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.23$ (m, 1H), 1.91-1.81 (m, 1H), $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.52$ $(\mathrm{m}, 1 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100\right.$ $\mathrm{MHz}): \delta=168.4,167.5,145.6,137.1,136.2,134.6,134.4,133.9,133.8,133.7,133.3,132.5,132.4$, $132.0,131.2,131.2,129.7,128.8,125.9,125.4,125.3,123.5,122.5,83.1,79.8,77.0,56.4,55.8,45.5$, $41.0,40.9,38.3,35.2,23.2,21.5,20.8,16.8,15.3,13.1,12.2,12.1 ; \operatorname{IR}(f i l m): \tilde{v}=2972,2927,1773$, 1717, 1428, 1387, 1331, 1258, 1216, 1106, 990, 965, $726 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 707\left(4, M^{+}\right), 675(4)$, 485 (4), 452 (4), 438 (4), 406 (4), 281 (13), 237 (77), 206 (100), 191 (20), 173 (20), 159 (34), 145 (27), 131 (22), 123 (17), 111 (20), 98 (25); HRMS (ESI): m/z: calcd for $\mathrm{C}_{45} \mathrm{H}_{57} \mathrm{NO}_{6}\left[M^{+}+\mathrm{Na}\right]: 730.40824$, found: 730. 40781.

Compound 29b: A solution of the ruthenium complex 22 ($37.3 \mathrm{mg}, 0.044 \mathrm{mmol}, 0.1$ equiv) in toluene

(3 mL) was added to a solution of ester $\mathbf{2 8 b}$ (311 $\mathrm{mg}, 0.44 \mathrm{mmol})$ in toluene (350 mL). The resulting brown mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h under a continuous flow of Ar. The reaction was quenched with ethyl vinyl ether ($0.42 \mathrm{~mL}, 4.4 \mathrm{mmol}$), stirred for 30 min at room temperature, and concentrated to a volume of ca. 5 mL . This solution was absorbed on silica which was added on top of a silica gel column and the product eluted with hexanes/EtOAc (4:1 \rightarrow 1:1, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to give macrocycle 29b as a white solid (219 mg, 74\%). $[\alpha]_{D}^{20}=-7.8\left(c=0.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.16(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=10.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{brd}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=11.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{brt}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=$ $14.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (dd, $J=15.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.51 (ddd, $J=15.2,10.4$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.47 (dd, $J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=14.7,9.5 \mathrm{~Hz}$, 1 H), 5.17 (dd, $J=10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (qdd, $J=7.1$, $7.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (td, $J=9.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (dd, $J=15.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (dd, $J=15.4,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{brd}, \mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.57-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dt}, J=13.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=171.8,167.5,161.0,145.6,137.1,136.1,135.8,134.2,133.8,133.7,133.3,132.3,132.0,131.2$, $129.7,128.8,125.9,125.4,125.3,121.1,83.2,79.8,77.0,56.5,55.9,48.1,47.1,41.0,40.9,38.3,35.3$, 23.2, 21.5, 20.8, 18.6, 16.8, 15.1, 14.2, 13.1, 12.1, 12.1; IR (film): $\widetilde{v}=2967,1734,1714,1456,1373$, 1360, 1226, 1216, $1117 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]$: 699.43436, found: 699.43469.

Compound 29a: Prepared analogously as a colorless oil ($7 \mathrm{mg}, 75 \%$). $[\alpha]_{D}^{20}=-3.0\left(c=0.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.57$ (dd, $J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.34 (brs, 1 H), 6.28 (dd, $J=11.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (dd, $J=11.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.04 (dd, $J=14.8,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97$ (dd, $J=15.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{brt}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (ddd, $J=$ $15.4,10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=14.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=14.7$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=$ $9.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, $3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{brd}, \mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dt}, J=13.7,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=168.2,167.5,161.5,145.6,137.1,136.1,135.6,134.3,133.7,133.7$, 133.3, 132.3, 132.3, 132.0, 131.2, 129.7, 128.7, 125.8, 125.3, 121.4, 83.1, 79.8, 76.9, 56.4, 55.8, 47.2, 42.0, 41.0, 40.8, 38.2, 35.2, 23.1, 21.4, 20.7, 16.7, 15.1, 13.1, 12.1, 12.0; IR (film): $\tilde{v}=3301,2962$, 2921, 2865, 1704, 1668, 1648, 1539, 1451, 1385, 1256, 1213, 1102, 991, $963 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]$: 685.41870, found: 685.41873.

Compound 29c: Prepared analogously as a colorless oil ($26 \mathrm{mg}, 84 \%$). $[\alpha]_{D}^{20}=-4.2\left(c=0.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.13(\mathrm{~s}, 1 \mathrm{H})$,
 7.32-7.28 (m, 2H), 7.25-7.21 (m,3H), 6.57 (dd, $J=$ $10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (brd, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=$ $11.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=14.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{brt}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (ddd, $J=15.2,10.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (dd, $J=15.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (dd, $J=15.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.36(\mathrm{dd}, J=14.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(b r d, J=$ $10.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{td}, J=7.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=9.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=15.6,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.75 (dd, $J=15.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=6.9,2.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.94(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{brd}, \mathrm{J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dt}, J=13.7,10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}$, $3 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=170.4,167.5,161.0,145.6,137.1,136.9,136.1,135.6,134.3,133.8,133.7$,
133.3, 132.3, 132.3, 132.0, 131.2, 129.7, 129.6, 129.0, 128.8, 127.4, 125.9, 125.4, 125.3, 121.6, 83.2, $79.8,77.0,56.5,55.9,53.7,47.3,41.0,40.9,38.5,38.3,35.3,23.2,21.5,20.8,16.8,15.2,13.1,12.1$, 12.1; IR (film): $\tilde{v}=3270,2921,1714,1668,1651,1532,1453,1385,1259,1213,1097,991,963$ cm^{-1}; HRMS (ESI): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{~N}_{2}\left[M^{+}+\mathrm{Na}\right]$: 775.46566, found: 775.46686.

Compound 29d: Prepared analogously using 100 mol\% of complex 22, which was added in four equal portions to the reaction mixture over the course of 5 h . Brown oil ($16 \mathrm{mg}, 46 \%$). $[\alpha]_{D}^{20}=-15.0$ ($c=$ $\left.0.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta=8.21(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{brd}, \mathrm{J}=7.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.17(\mathrm{brd}, \mathrm{J}=7.0$ $\mathrm{Hz}, 0.5 \mathrm{H}), 7.00(\mathrm{brt}, J=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.93(\mathrm{brt}, J=6.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.56(\mathrm{dd}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$

($\mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.28(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (ddd, $J=11.2,5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, \mathrm{J}=14.8$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (dd, $J=15.1,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.51 (ddd, $J=15.0,10.3,4.7 \mathrm{~Hz}$, 1 H), 5.47 (dd, $J=15.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.32$ (m, 2H), 5.17 (dd, $J=10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{td}, J=9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.12(\mathrm{~m}$, $1 \mathrm{H}), 2.97-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{brd}+\mathrm{s}, 2.5 \mathrm{H}), 2.57(\mathrm{~s}, 1.5 \mathrm{H}), 2.56-2.45$ $(\mathrm{m}, 2.5 \mathrm{H}), 2.37-2.21(\mathrm{~m}, 2.5 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}$): $\delta=170.3,167.5,161.7,161.4,145.6,137.1$, $136.2,133.8,133.7,133.3,132.3,132.0,131.2,129.7,128.8,125.9,125.5,125.3,121.4,121.2,83.2$, $79.8,77.0,56.5,55.8,50.9,50.6,50.2,41.0,40.9,38.8,38.3,37.8,23.2,21.5,20.8,16.8,15.3,13.1$, 12.1, 12.0; HRMS (ESI): m / z : calcd for $\mathrm{C}_{43} \mathrm{H}_{64} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{~S}\left[M^{+}+\mathrm{Na}\right]$: 775.43265, found: 775.43329 .

Compound 29e: Prepared analogously as a white solid ($350 \mathrm{mg}, 86 \%$). $[\alpha]_{D}^{20}=-7\left(c=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.81(\mathrm{~m}, 2 \mathrm{H}), 7.54$
 (m, 1H), 7.46 (m, 2H), 7.14 (d, J=5.7 Hz, 1H), $6.63(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.09-5.85 (m, 3H), 5.56-5.43 $(\mathrm{m}, 2 \mathrm{H}), 5.42-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.82(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.47(\mathrm{~m}, 3 \mathrm{H})$, $2.30(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{bs}, 12 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 12 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=170.4,167.5$, 167.2, 145.6, 137.1, 135.9, 134.3, 134.2, 134.1, 133.8, 133.7, 133.3, 132.4, 132.3, 132.1 (2x), 132.0, $131.2,129.8,128.9,128.8,127.3,125.5,125.4,121.6,83.3,79.8,77.0,63.2,56.5,55.9,55.0,47.4$, $41.0(2 x), 38.3,35.3,25.9,23.2,21.5,20.8,18.4,16.8,15.2,13.1,12.1,12.0,-5.4,-5.5$; IR (film): $\widetilde{v}=$ 3298, 2925, 2856, 1711, 1640, 1535, 1463, 1258, 1215, 1100, 988, 963, 836, 778, $692 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{53} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 905.54705 , found: 905.54773.

Macrocycle 39: Prepared analogously as a colorless oil ($20.5 \mathrm{mg}, 63 \%$). $[\alpha]_{D}^{20}=-2.0\left(c=0.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}$): $\delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.57$ (dd, J = 10.4, 1.5 Hz, 1H), 6.56-6.48 (m, 1H), 6.46 (d, J = $15.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.28 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.41 ($\mathrm{ddt}, J=15.1,10.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, \mathrm{J}=14.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=15.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (d, J = 15.4 Hz, 1H), $5.69(d t, J=15.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (ddd, $J=15.5,10.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dd, J = $15.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.37 (dd, $J=15.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.34 (dd, $J=14.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (dd, $J=10.6,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{td}, J=7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=9.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, \mathrm{J}=9.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, \mathrm{J}=9.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.22$ (m, 1H), $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.29$ ($\mathrm{dt}, \mathrm{J}=13.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91-1.86 (m, 1H), $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ 0.88 (s, 9 H), 0.09 (s, 3H), 0.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}$): $\delta=169.6,167.5,161.1,145.7$, 137.1, 136.0, 134.9, 133.8, 133.3, 132.4, 132.3, 132.0, 131.3, 130.2, 129.7, 129.0, 128.8, 128.1, 125.8, $125.3,82.7,79.8,77.0,63.0,56.4,55.9,53.4,41.7,41.0,40.9,38.3,35.2,25.9,23.2,21.5,20.8,18.3$, 16.7, 13.1, 12.2, 12.0, -5.4, -5.5; IR (film): $\tilde{v}=3298,2924,1707,1694,1652,1452,1387,1106,963$, $838 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{46} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 815.50010$, found: 815.50075.

Compound S-20. Prepared analogously as a colorless oil ($8.7 \mathrm{mg}, 55 \%$). $[\alpha]_{D}^{20}=+7.0\left(c=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=8.22(\mathrm{~s}, 1 \mathrm{H}), 6.58$
 (dd, $J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (brs, 1H), 6.45 (d, $J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.40 (brs, 1H), 5.98-5.93 (m, 2H), 5.88 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=$ $15.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{dd}, J=$ $10.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{td}, J=9.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=$ $10.1,9.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=9.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.16(\mathrm{~m}, 4 \mathrm{H})$, $3.23(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.22(\mathrm{~m}, 10 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=168.6,167.3,160.0,144.4$, $136.0,135.5,132.6,132.3,132.3,131.5,131.3,131.0,129.6,128.7,127.7,124.9,124.3,78.8,76.0$, 76.0, 62.1, 55.3, 54.8, 52.3, 42.3, 39.9, 38.7, 37.2, 34.2, 31.4, 28.7, 25.9, 24.9, 24.1, 22.1, 20.6, 19.6, 17.3, 16.2, 12.1, 11.0, $-6.5,-6.6$; IR (film): $\tilde{v}=3313,2928,2858,1650,1546,1463,1379,1258$, 1218, 1104, 990, 964, 837, 811, 779, $745 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{45} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 805.5151, found: 805.5158.

Compound S-21: Prepared analogously as a pale brown oil ($5.4 \mathrm{mg}, 70 \%$). $[\alpha]_{D}^{20}=-52.0(c=0.18$,

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.16(\mathrm{~s}$, 1H), $7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.69$ (brd, J = $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57 (dd, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.47 (d, J = $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.43 (brs, 1H), 6.14 (dd,
$J=15.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.41(\mathrm{~m}, 5 \mathrm{H})$, $5.20-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{td}, J=9.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}$, $J=9.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}$, $3 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.6,167.7$, $161.3,146.0,139.9,139.4,137.1,136.0,133.8,133.8,133.2,132.3,132.3,131.8,131.3,129.6,129.1$, $128.9,128.8,125.7,125.3,79.9,79.6,76.9,63.1,55.8,54.2,53.3,44.7,41.0,40.9,38.3,36.0,35.2$, 25.9, 23.2, 21.4, 20.7, 18.4, 16.7, 13.1, 12.2, $-5.4,-5.5$; IR (film): $\tilde{v}=2931,2850,1737,1681,1534$, 1451, 1373, 1226, 1216, $1105 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{~N}_{2} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 839.50010, found: 839.50006.

Compound S-22: Prepared analogously from ester 67 ($36 \mathrm{mg}, 0.044 \mathrm{mmol}$) as a pale brown oil (29
 $\mathrm{mg}, 85 \%) .[\alpha]_{D}^{20}=-19\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.24$ (s, 1 H), 6.53-6.50 (brs, $2 \mathrm{H}), 6.40(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-5.98(\mathrm{~m}, 2 \mathrm{H})$, $5.92(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.51(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.40(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{dd}, J=9.1,7.0,1 \mathrm{H}), 5.08(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.04(\mathrm{~d}, J=9.9, \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=9.6,9.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=9.6$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96-3.82 (m, 2H), 3.63 (dd, J=9.6, 7.7 Hz, 1H), 3.35-3.29 (m, 1H), 3.23(s, 3H), 3.25-3.19 $(\mathrm{m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=173.1,169.8,161.2,137.0,136.4$, $135.8,135.1,134.5,133.8,133.3,132.2,131.3,130.8,129.9,129.1,129.0,125.5,125.4,121.8,83.2$, $80.2,77.3,63.1,56.5,56.1,53.5,47.4,40.5,40.0,35.9,35.1,33.4,26.3,26.0,23.3,20.8,18.4,17.5$, 15.3, 13.5, 12.2, -5.4, -5.5; IR (film): $\tilde{v}=3308,2929,2858,1732,1656,1537,1462,1377,1257$, 1103, 989, 965, $838 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{45} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 803.5007, found: 803.5000 .

Compound S-23: Prepared analogously as a colorless oil ($7.0 \mathrm{mg}, 66 \%$). $[\alpha]_{D}^{20}=+30\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.23$ ($\mathrm{s}, 1 \mathrm{H}$), 6.71 (t , $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{brd}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.05(\mathrm{~m}, 3 \mathrm{H}), 5.60-5.56(\mathrm{~m}, 1 \mathrm{H})$, 5.55 (dd, $J=15.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (dd, $J=14.7,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.41(\mathrm{~m}, 1 \mathrm{H})$, $4.06(\mathrm{dd}, J=9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=8.8,8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.27-2.22 (m, 1H), 2.21-2.17 (m, 1H), 2.12-2.08 (m, 3H), 2.07-2.00 (m, 1H), $1.98(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 2 \mathrm{H})$, $0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=169.8$,
$167.3,161.1,142.1,139.5,135.7,135.3,135.0,132.8,132.8,132.4,131.0,129.7,129.0,128.5,126.6$, 126.1, 124.1, 121.9, 82.7, 80.7, 77.2, 63.1, 56.3, 55.7, 47.4, 40.6, 40.1, 39.6, 35.7, 28.1, 26.9, 25.9, 23.0, 20.7, 18.4, 17.2, 16.6, 15.2, 12.7, 12.4, 1.1, $-5.4,-5.5$; IR (film): $\tilde{v}=3297,2929,2857,1653$, 1531, 1463, 1384, 1259, 1096, 1019, 964, 837, $800 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{46} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[\mathrm{M}^{+}\right.$ +Na]: 817.5157, found: 817.5158.

Macrocycle S-24: Prepared analogously from ester $\mathbf{8 0}(5 \mathrm{mg}, 0.0062 \mathrm{mmol})$ as a colorless syrup (3.6
 $\mathrm{mg}, 75 \%) .[\alpha]_{D}^{20}=-8\left(c=0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 6.57-6.48(\mathrm{~m}$, $3 \mathrm{H}), 6.33(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.14(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04$ (dd, $J=14.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.96 (dd, $J=14.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.63 (td, $J=15.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $5.57-5.51(\mathrm{~m}, 2 \mathrm{H}), 5.51$ (dd, $J=15.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dd, $J=10.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H})$, $2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.1(\mathrm{~s}$, $3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta=169.8,167.6,161.2,145.2,136.8,135.5,134.8$, $134.0,134.0,133.2,132.4,132.0,131.9,131.6,130.7,129.8,129.2,126.4,125.3,125.2,121.9,85.6$, $76.6,63.1,56.0,47.4,40.2,39.9,37.8,32.2,30.0,26.9,25.9,21.2,20.7,18.4,17.3,15.2,15.2,13.2$, 12.3, -5.4, -5.5; IR (film): $\tilde{v}=2930,2857,1653,1541,1255,1217,1111,965,838 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{46} \mathrm{H}_{72} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 799.51519, found: 799.51159.

Macrocycle 89: Prepared analogosly as a colorless oil ($6.8 \mathrm{mg}, 64 \%, E / Z=2: 1$). Further purification by
 HPLC afforded pure $E-89(1.6 \mathrm{mg}) .[\alpha]_{D}^{20}=-47$ ($c=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta=$ $8.23(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (d, J = 6.5 Hz, 1H), $6.50(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27$ (d, J = $11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16-6.05 (m, 4H), 5.72 (dd, $J=14.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.5,8.3,1 \mathrm{H}), 5.47-$ $5.39(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.14(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{td}, J=7.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=9.8$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{td}, J=9.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=15.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=15.2,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{dd}, J=9.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.66-$ $2.59(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.28(\mathrm{~m}$, $4 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta=169.7,167.6,161.1,145.6,137.4,135.9,135.5,134.8,133.9,133.3,133.0$, $132.0,131.9,131.8,129.8,126.4,125.4,125.1,121.7,84.2,80.8,77.2,63.0,56.3,55.8,47.3,39.1$, $38.1,37.6,34.6,31.9,28.2,25.8,23.8,21.3,18.3,15.9,15.2,13.2,12.4,12.0,1.09,-5.5,-5.6$; IR (film): $\tilde{v}=2921,2872,1660,1442,1392,1110,989,820 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m / z : calcd for $\mathrm{C}_{46} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]: 817.51575$, found: 817.51522.

Final Deprotections

Compound 9: A solution of TBAF (1 M in THF, 0.41 mL) was added dropwise to a solution of macrocycle 29e ($350 \mathrm{mg}, 0.4 \mathrm{mmol}$) in THF (4.1
 mL) at $0^{\circ} \mathrm{C}$. After stirring for 15 min , the mixture was absorped on silica and the product purified by flash chromatography (hexanes/EtOAc, 1:1 $\rightarrow 0: 1$) to give compound 9 as a white solid (301 $\mathrm{mg}, 99 \%) .[\alpha]_{D}^{20}=+4\left(c=0.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.82(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.27(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.94(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 2 \mathrm{H})$, 5.40-5.34 (m, 2H), $5.18(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dt}, \mathrm{J}=9.9,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.95-3.83 (m, 2H), $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H})$, $2.63(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74$ (s, 3H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=171.3,168.2,167.5,145.6,137.1,136.1,135.6,134.2,133.8$, $133.7,133.7,133.3,132.4$ (2x), 132.3, 132.1, 131.2, 129.8, 129.0, 128.8, 127.5, 126.0, 125.4, 125.3, $121.0,83.1,80.0,77.1,63.1,56.5,55.9,55.4,47.0,41.0,40.8,38.2,35.3,23.2,21.5,20.8,16.8,15.2$, 13.2, 12.1, 12.0; IR (film): $\tilde{v}=3333,2925,1710,1643,1529,1448,1257,1216,1104,989,964,744$, $712 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{47} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{O}_{7}\left[M^{+}+\mathrm{Na}\right]$: 791.46057, found: 791.46082.

Compound 40: Prepared analogously as a colorless oil ($17 \mathrm{mg}, 97 \%$). $[\alpha]_{D}^{20}=-10.0\left(c=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$);

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 6.87$ (bs, 2H), 6.78 (bs, 1 H$), 6.56(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.43(\mathrm{t}, \mathrm{J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.15-5.95 (m, 3H), $5.88(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (dt, J = 14.9, 6.1 Hz, 1H), 5.54-5.44 (m, 2H), 5.39-5.33 (m, 1H), 5.19-5.14 (m, 1H), $5.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{bs}, 1 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=11.4$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, \mathrm{~J}=13.1,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dt}, \mathrm{J}=13.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H})$, $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta=170.4,167.5,161.9,145.7,137.1,136.0,134.9,133.7,133.3,132.3$, $132.3,132.0,131.2,130.0,129.8,129.0,128.8,127.7,126.0,125.3,82.7,79.9,77.0,62.8,56.4,56.0$, 53.1, 41.6, 40.9, 40.7, 38.2, 35.3, 23.2, 21.5, 20.7, 16.7, 13.1, 12.3, 12.1; IR (film): $\tilde{v}=3331,2926$, 2850, 1712, 1656, 1545, 1448, 1388, 1259, $1097 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right.$ +Na]: 701.41362, found: 701.41357.

Compound 51: Prepared analogously as a colorless oil ($8.4 \mathrm{mg}, 66 \%$). $[\alpha]_{D}^{20}=-11.0\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.27$ (s, 1H), 6.79 (brs, 1H), 6.59 (brs, 1H), 6.51 (dd, $J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$),
$6.46(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.33(\mathrm{~m}, 2 \mathrm{H})$, $5.16(\mathrm{dd}, J=11.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{td}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H})$, 4.11 (ddd, $J=10.1,9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (ddd, $J=11.1,4.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.65-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.15$ $(\mathrm{m}, 4 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.27(\mathrm{~m}, 10 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.6,168.7,161.8,145.7,137.1,136.5,133.7,133.5,133.4,132.6,132.4$, $132.0,130.8,129.8,128.8,125.9,125.4,79.9,77.1,77.1,63.0,56.4,55.9,52.9,43.6,41.0,39.7,38.3$, 35.3, 32.4, 29.6, 26.3, 25.2, 23.2, 21.7, 20.8, 17.3, 13.2, 12.1; IR (film): $\tilde{v}=3324,2928,1649,1545$, 1450, 1381, 1259, 1218, 1103, 990, 964, $745 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{7}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 691.4296, found: 691.4293.

Compound 59: Prepared analogously as a colorless oil ($4 \mathrm{mg}, 80 \%$). $[\alpha]_{D}^{20}=-97.8\left(c=0.23, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$);

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.12(\mathrm{~s}, 1 \mathrm{H}), 7.32$ (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (brs, $1 \mathrm{H}), 7.16$ (d, J=7.4 Hz, 1H), 6.85 (brd, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.58 (dd, $J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (brs, 1H), 6.46 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$
(dd, J = 15.3, 10.5 Hz, 1H), 5.93 (d, J = 15.6 Hz, 1H), 5.56-5.52 (m, 1H), 5.52-5.42 (m, 4H), 5.20 (dd, $J=9.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{td}, J=9.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (ddd, J = 11.4, 3.9, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}$, $3 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=7.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.61(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dt}, J=13.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=170.6,168.1$, $161.7,146.2,139.8,139.3,137.1,135.9,133.8,133.8,133.2,132.3,132.3,131.7,131.3,129.6,129.4$, $129.2,128.8,128.8,125.8,125.3,125.3,80.1,80.1,76.9,62.8,56.4,55.8,52.7,44.3,40.9,40.8,38.2$, $35.4,35.2,23.2,21.3,20.7,16.6,13.1,12.2 ; \operatorname{IR}(f i l m): \tilde{v}=3301,2962,2926,2870,1709,1651,1532$, 1453, 1385, 1259, 1213, 1103, 1064, 991, 963, $799 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{~N}_{2}\left[M^{+}\right.$ +Na]: 725.41362, found: 725.41450.

Compound 68: Prepared analogously as a pale brown oil (23 mg, 93\%). $[\alpha]_{D}^{20}=-1.0\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 6.76$ (d,
 $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=$ $11.4,1 \mathrm{H}), 6.10-5.98(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.62-5.40(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{dd}, J=9.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.50-4.46 (m, 1H), 4.16-4.10 (m, 2H), 3.99-3.82 (m, 2H), $3.65(\mathrm{ddd}, J=11.3,8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H})$, 2.48-2.38 (m, 1H), 2.31-2.21 (m, 3H), 2.05-1.92 (m, 3H), $1.78(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{brs}, 6 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$, $1.34-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=173.1,170.7,161.9,137.0$, $136.4,135.5,135.0,134.5,133.8,133.3,132.2,131.2,130.8,129.9,129.1,129.0,125.4,125.2,121.1$,
83.2, 80.2, 77.3, 62.8, 56.5, 56.1, 53.0, 47.1, 40.5, 39.9, 35.8, 35.0, 33.4, 26.2, 23.3, 20.7, 17.5, 15.2, 13.4, 12.3; IR (film): $\tilde{v}=3301,2927,1727,1656,1535,1449,1378,1197,1146,1102,990,965,866$ cm^{-1}; HRMS (ESI): m / z : calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{6}\left[M^{+}+\mathrm{Na}\right]$: 689.4139, found: 689.4136.

Compound 74: Prepared analogously as a colorless oil ($0.8 \mathrm{mg}, 65 \%$). $[\alpha]_{D}^{20}=-2.0\left(c=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.25(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.71$ (m, 2H), $6.64(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.06(\mathrm{~m}, 3 \mathrm{H}), 5.59(\mathrm{dd}, J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.42$ (dd, $J=$ $15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=9.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-$ $4.46(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.00$ (ddd, $J=9.0,8.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92-3.84 (m, 2 H), 3.65-3.61 (m, 1H), $3.48(\mathrm{c}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}$, 1 H), 2.17-2.09 (m, 3H), 2.05-1.95 (m, 3H), $1.77(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=$ $170.6,167.3,161.8,142.1,139.7,135.5,135.1,135.0,132.7,132.7,132.7,130.9,129.8,129.0,128.5$, 126.4, 125.9, 123.5, 121.4, 82.3, 81.0, 77.3, 62.8, 56.2, 55.8, 53.0, 47.2, 40.6, 39.7, 39.5, 35.8, 28.2, 27.0, 23.2, 20.6, 18.4, 17.1, 16.6, 15.1, 13.0, 12.5; IR (film): $\widetilde{v}=3318,2927,2857,1650,1535,1447$, 1383, 1258, 1182, 1094, 991, 964, 868, 802, $737 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right.$ $+\mathrm{Na}]: 703.4297$, found: 703.4293.

Compound 81: Prepared analogously as a colorless oil ($2.9 \mathrm{mg}, 95 \%$). $[\alpha]_{D}^{20}=-2\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}\right): \delta=8.25(\mathrm{~s}, 1 \mathrm{H}), 6.71$
 (bs, 1H) $6.64(\mathrm{bs}, 1 \mathrm{H}), 6.57$ (td, $J=10.0,1.6 \mathrm{~Hz}$, 1H), 6.33 (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 ($\mathrm{d}, \mathrm{J}=11.1 \mathrm{~Hz}$, 1 H), 6.13 ($\mathrm{d}, \mathrm{J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.05(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.61(\mathrm{td}, J=15.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (dd, $J=9.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 2 \mathrm{H})$, $3.22(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}$, $3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}$): $\delta=170.7,167.6,161.9,145.2,137.0,135.3,134.9,133.9,133.2,132.4$, 132.0, 131.5, 130.7, 129.9, 129.3, 125.2, 124.9, 121.3, 83.5, 76.7, 62.8, 56.0, 52.9, 47.1, 40.1, 39.9, 37.6, 32.2, 29.9, 21.2, 20.7, 17.4, 15.2, 13.2, 12.3, 12.3; HRMS (ESI): m/z: calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{6}$: 685.41881, found: 685.42481.

Compound 90: Prepared analogously as a colorless oil (1 mg, 73\%). $[\alpha]_{D}^{20}=-85\left(c=0.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$
 NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}, 600 \mathrm{MHz}$): $\delta=8.25(\mathrm{~s}, 1 \mathrm{H}), 6.91$ (bs, 1H), $6.77(\mathrm{bs}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=10.0, \mathrm{~Hz}, 1 \mathrm{H})$, 6.27 (d, J = 11.3, Hz, 1H), 6.16-6.05 (m, 4H), 5.72 (dd, $J=14.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (dd, $J=15.5,8.1$ Hz, 1H), 5.47-5.39 (m, 2H), 5.16 (dd, J = 9.9 Hz, 1H), 4.94 (d, J = 9.4 Hz, 1H), 4.51-4.46 (m, 1H), 4.09 (d, J = 11.2 Hz, 1H), 3.98 (td, J = 9.6, 3.7 Hz, 1H), 3.87 (d, J = 5.9 Hz, 1H), 3.70-3.62 (m, 1H), 3.54 (dd,
$J=13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H})$, $2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.40(\mathrm{~m}$, $6 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 150 \mathrm{MHz}\right): \delta=170.6,167.6$, $161.9,145.6,137.4,135.8,135.4,134.7,133.9,133.0,132.0,131.8,129.9,126.6,125.4,124.9,121.1$, 84.1, 80.9, 77.3, 62.8, 56.3, 55.8, 47.1, 46.3, 39.1, 38.2, 37.5, 34.6, 32.0, 28.3, 27.1, 23.9, 21.3, 16.1, 15.2, 13.3, 12.5, 12.2, 8.7; IR (film): $\tilde{v}=3309,2924,2854,1656,1535,1453,1385,1258,1077,1017$, 993, $799 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}\left[M^{+}+\mathrm{Na}\right]$: 703.42927, found: 703.42995.

[^0]: 1 For a description of the assays, see: a) H. H. Fiebig, D. P. Berger, W. A. Dengler, E. Wallbrecher, B. R. Winterhalter in Immunodeficient Mice in Oncology (Eds.: D. P. Berger, H. H. Fiebig), Contrib. Oncol., Vol. 42, Karger, Basel, 1992, pp. 321-351; b) T. Roth, A. M. Burger, W. A. Dengler, H. Willmann, H. H. Fiebig, in Relevance of Tumor Models for Anticancer Drug Development (Eds.: H. H. Fiebig, A. M. Burger), Contrib. Oncol., Vol. 54, Karger, Basel, 1999, pp. 145-156; c) W. A. Dengler, J. Schulte, D. P. Berger, R. Mertelsmann, H. H. Fiebig, AntiCancer Drugs 1995, 6, 522-532; d) H. H. Fiebig, A. Maier, A. M. Burger, Eur. J. Cancer 2004, 40, 802-820.

[^1]: ${ }^{2}$ A. Fürstner, C. Nevado, M. Waser, M. Tremblay, C. Chevrier, F. Teplý, C. Aïssa, E. Moulin, O. Müller, J. Am. Chem. Soc. 2007, 129, 9150-9161.

[^2]: ${ }^{3}$ See the accompanying paper in this issue: J. Gagnepain, E. Moulin, A. Fürstner, submitted.

[^3]: ${ }^{4}$ R. D. Connell, T. Rein, B. Aakermark, P. Helquist, J. Org. Chem. 1988, 53, 3845-3849.

[^4]: ${ }^{5}$ J. A. Marshall, N. D. Adams, J. Org. Chem. 1998, 63, 3812-3813.

[^5]: ${ }^{6}$ The configuration of the alcohol was determined by Mosher ester analysis.

[^6]: ${ }^{7}$ R. M. Wilson, W. S. Jen, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 11616-11617.

[^7]: ${ }^{8}$ J. Ackroyd, M. Karpf, A. S. Dreiding, Helv. Chim. Acta 1985, 68, 338-344.

